Reference design

FIUIE Lot 1
FIUIE 2 bbb 1
QU 3 e 2
FIQUIE 4 bbb 3
FIOUIE 5 bbb 3
FIQUIE B .ot 4
QU 7 bbb 5
FIUIE 8 e 6
FIQUIE O e 6
Example

Figure 1

P51 0|12 |3|4|5|6|7|8|9|10|11({12|13|14|15]16

10|l4|3|5|2|7|6 (8|1 |12|11|13(10(15(|14|16]| 9

sequence o(8(4|2|1(3(6|5|7|16|12|10| 9 (11|14|13|15

Figure 2

Fig 1 is the example we explore for the proposed method.

Fig 2 lists the corresponding PTS & DTS of each frame.

The table in red lists the actual PTS in sequence when demuxing. It is, we should
receive O firstly. Then comes by 8 (the start of next GOP), 4 (1* level B frame) 2 (2™

level B frame) 1 (3" level B frame) ...

sequence

1k\. »
\

|
|
/
|
|
|
|

=$—sequence

ORNWRUOIGINOW

Figure 3

ORrNWARUONWW

r—

Lppenp ™

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

e PTS
wl=DTS

Issued case

1 2 3 4 5 6 7 8 9 10 missed
0.5 2> 0 8 None
1.5 > 0 8 1
25 | > 0 8 1.2
35 2> 0 8 1,2,3
4.5 > 0 8 1,2,3,4
Sy > 0 8 1,2,3,4,5
65 | > 0 8 1,2,3,4,5,6
7.5 > 0 8 1,2,3,4,5,6,7
8.5 > 0 8 4 2 1 3 6 5 7 16 None

Red: dropped at the end of flow
Figure 4

Fig 4 indicates the issue we have now. One could check for this example we may
MISS at most 7 frames if stop is set to 7.5. Fig 5 lists the original flow.

/* do tim estam ps. we do this first so thatwe canknow when we+'
* stepped over the segm ent stop position. */+
timestamp= gt ffmpeg time £ fo. gstpkipts avstream->tim e base):v
if (GST_CLOCE _TIME IS VALID (timestamp)) {+
stream ->last fs=tim estamp:+
| o
duration= gst_ffmpeg time ff _fo_gst(pkt.durafion. avstream->time_base):+
if (G_UNLIKELY ('duration)) {+
GET_WARNING_OBIJECT (demux. "invalid buffer duration. setting to NONE ")+
duration=GST_CLOCEK_TIME_NONE:+

| o

/* check if we ran outside of the segm ent */+'
if (demux->segment.stop!= -1 &d& tim estam p> demux->sezm ent.stop)
gotg drop:+

Figure 5

1st proposal

We list the two judgments of 1% proposal here firstly.

Criterion 1: If we have met two consecutive frames F1 & F2 and both of their PTS are
greater than segment’s stop.

Criterion 2: F2’s PTS is greater than F1’s PTS.

If bothe criterion 1 & 2 are satisfied, after F2 there is NOT a frame F whose PTS
is less than F1.

1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15

05 | = 0 8 4 2 1 3 6
1.5 | =2 0 8 4 2 1 3 6
25| =2 0 8 4 2 1 3 6
35| 2 0 8 4 2 1 3 6 5 7
45 | =2 8 4 2 1 3 6 5 7
55| =2 8 4 2 1 6 5 7 16
65| =2 0 8 4 2 1 3 6 5 7 16
75 | = 0 8 4 2 1 3 6 5 7 16 | 2 | 10 9 H
85| = 0 8 4 2 1 3 6 5 7 |1+ | 2|18 9 (B

8 > 0 8 4 2 1 3 6 5 7 16 | 2 | 10 9 H

Green: dropped at renderer
Red: dropped at the end of flow
Figure 6

Take segment.stop = 4.5 for example; originally when meeting 2™ frame with PTS 8’
we will go to drop. Therefore the frames with PTS =1, 2, 3, 4 are all missed.

With the proposed method, only when reading the frames with PTS =5 & 7 both the
criterions are satisfied. Notice that for this case we passed down the frames with PTS
=0,1,2,3,4,6,8 Among them 0, 1, 2, 3, 4, 8 are necessary for decoding but 6 is
redundant. Since 6 & 8 will be dropped at renderer when checking segment’s
stop where, we don’t need to care about even we pass them down.

Please verify the correctness of 1* proposal by inspecting the given example.

The flowchart is given in fig 7 below.

Set Frame; 4, = NULL;

Get current frame’s PTS = PTS,., ‘—| Push current frame

T

Push Framepc,g, 3
Set PT84, = GST_CLOCK_TIME_NONE

[Set PTS g, = GST_CLOCK_TIME_NONE;]

Frame, I=NULL?

PTS,, = segment.stop ? pending!

ending!=NULL 7

&&
PTS ™ PTS peaing??

Frame,

Push Frame o, gine ; No
Set Frameeqjn, - Framen, g,
Set PTS e ing = PTS 0w

Yes Free Frame,., i, & Frame, .,
goto drop;

|

Done; go to drop

Figure 7

2nd proposal
We list the lemma on which 2™ proposal is based here firstly.

Lemma: If we have following sequence & PTS(F2) > PTS(F1), then there is

NO any frame F such that PTS(F) < PTS(F1) within region 3.

* (reqgion 1), F1, *(region 2), F2, *(region 3)

1 23| 4|56 7|8 |9 |10|11 12|13 |14 | Save

gain
051> 0 81 4| 2 |[+] 3] =2
152 0 S|4 1213 -1
25 0 g1 4121|136 -1
35 0 § |42 1] 3|6 -3
45> 0 8|14 |2 1|3 |6]|5]7A -1
55 0 g1 4|2 1|3 6|57 -2
65> 0 814|213 |6]|5]|I[7]1] -1
759> 0 B4 |2 1|3 |6]|5 |7] -5
85 0 8|4 |2 |13 |6 |5 |7 [16|12|10]|[9|H] -1
8 P 0 8142|136/ |5/ 7|3+ -5

Green: dropped at renderer
Red: dropped at the end of flow

Figure 8

Fig 8 lists the execution result as well as how many steps it saves compared with the
1* proposal.

We demonstrate the usage of this lemma by example when stop = 3.5 as well as the
flowchart below.

[Set PTS epans = GST_CLOCK_TIME_MAX; J

l

Get current frame’s PTS = PTS,,,,

35 2> 0 8 4 2 1 3 6]

Push current frame

No; Case 1

No; Case 2
Set PTSeading =
PTSy0

Yes; Case 3
Done; go to drop

Figure 9

When demuxing 1% frame, PTS = 0; since PTS < stop, go to case 1.

When demuxing 2" frame, PTS = 8; since PTS >= stop & PTSending has not been

assigned yet, goto case 2 (assign PTSpending DY 8).

When demuxing 3 frame, PTS = 4; since PTS >= stop & PTSpending >= PTSnow, goto

case 2 (replace PTSpending by 4)

When demuxing 4" frame, PTS = 2; since PTS < stop, goto case 1

When demuxing 5" frame, PTS = 1; since PTS < stop, goto case 1

When demuxing 6" frame, PTS = 3; since PTS < stop, goto case 1

When demuxing 7" frame, PTS = 6; since PTS >= stop, ince PTS >= stop &

PTSpending < PTSnow, goto case 3 (complete).

