
Inter-process communication via sockets

Introduction
This is an introductory assignment in the practicum Codesign. It is also a module within the
operation system course. Find available libraries, framework and demos in the course notes
for the operating system practicum (in Dutch language).
After this assignment you will be familiar with:

1. sockets

2. client-server model

3. daemons

Preparation
See the book O.S. Conceptsof Silberschatz (Edition 6):
§4.6.1
See the book Linux A-Z:

1. chapters17-18

2. chapters 22-23

Sockets

Sockets share a lot with pipes. Also sockets behave as files. E.g., you can read and write
to a socket. The main difference, however, is, that an unnamed pipe (denoted by a |) only
exists between two processes, created by a fork. Necessarily, such processes exist on the same
systems. For a socket the processes do not have been created from each other by a fork.
As long as there is network connection processes on different machines can communicate on
different ways via sockets.

Sockets ? first introduced in BSD-UNIX ? form a general inter-process communication
(IPC) mechanism that can be based on top of different network protocols. We will make use
of the common TCP/IP protocol for a network connected to Internet. Each machine in the
network has an Internet-address, e.g., within the cluster Informatica according to the pattern
130.89.xx.xx. Instead of address numbers is common to use host names or domain names
according Internet agreements.

Under Linux the file /etc/hosts contains a list of IP-numbers with related domain names and
possibly alias host names. See this file and find out what internet number and hostname your own
machine has. See also the file /etc/resolv.conf. This file contains a list of the names of the name-
servers. Name-servers are used to find IP-addresses for the domains of host names. The file can
contain a local domain name as search area (in our case cs.utwente.nl) such that a host name alone,
e.g., xyz, is sufficient to identify a machine met domain name xyz.cs.utwente.nl .

Different socket-connections from and to a single machine are distinguished by the machine iden-
tification as well as by a port number. There exist agreements for standard port numbers for certain
Internet-services (see file /etc/services). Client programs trying to reach a certain server on a remote
host machine will give a specific port number. E.g., a telnet-connection as standard goes via the port
number 23 and a mail -connection via port 25. When calling telnet a different port number can be
given. Technically it is possible, e.g., to send mail using telnetvia port 25.

In the following assignment we will implement a bulletin-server. The task of such a bulletin-
server is to store text messages of client processes in a bulletin-file. Each time a client makes a
socket connection to the bulletin-server the client sees the complete bulletin-file. Moreover, a textual
message can be added to the bulletin-file. Via a bulletin-serverclient processes can see each others
textual messages.

As client processes all over the world can make a socket connection via Internet, the bulletin-
server could provide a world wide service. Of course, this depends on the accessibility of the server
machine. The satellite machine is connected to a local network and not accessible via the practicum
network. The bulletin-servershould run by preference on the practicum host machine. From the
satellite system a connection can be established with a client.

In the assignment we also will see how the bulletin-server as daemon(a permanently available
system process) can be installed in the system.

We will use a simple socket-library (sockLib.h, sockLib.c) for TCP/IP connections.
This library contains functions with the following prototypes:



sockStruct *CreateSocket(void);
int ReturnSocket(sockStruct *handle);
int ServerConnectionToClient(sockStruct *handle,
int portNumber);
int ClientConnectionToServer(sockStruct *,
char *machine,
int portNumber);

A socket connection is established as a consequence of a ”rendez-vous” between a call of Server-
ConnectionToClient and ClientConnectionToServer , where a socket-descriptor is created. See the
socket-library code. The following system calls are used:

1. socket(in CreateSocket): to create a socket of the correct type

2. bind(in ServerConnectionToClient) to bind a socket in the server to an IP-address and
port number.

3. listen(in ServerConnectionToClient) to open the socket in the server for possible clients
that want to connect.

4. accept (in ServerConnectionToClient) to wait in de server for a client that wants to connect.
With accept the rendez-vousis completed.

5. connect (in ClientConnectionToServer) to make a connection from the client.

See the manual pages for more details on these system calls. By the use of accept the server
blocks until a client comes up. It is also possible to set a non-blocking-flag, such that a connection
can be made only if a client comes up.

Using the socket-library functions a server program and a clientprogram can be made with the
functionality in mind. These programs are called as follows: First with:
server porta server-program is started that via portbuilds connections and provides service. The
server-program continuously accepts new client-connections and works in principle for
unbounded time. It must be ended by a kill command (e.g. Ctrl-C or the kill-command).

1. Then, with:

client machinename port
One or more client processes are started. Via a client process text can be typed in, that is sent

to the server in order to be added to the bulletin-file. A client process is finished by ending the input
with Ctrl-D). In this way, client processes can be active on any machine at any moment. Also telnet
(started with telnet machinename port) must be available for use as client process.

Above, machinename means the name of the machine, where the server is started. In most cases
this is the machine where the work is done (localhost), but it also may be any (practicum) machine
in the network

On the system demo versions of clientDemo and serverDemo are available showing how it works.
There are frameworks available (sockClient.c and sockServer.c) that can serve as basis for the im-
plementation. In the server-implementation for each socket-connection established a child process
is split off that is the service process for the client process. The frameworks contain hints for what
has to be added at which place. The intention is that the service process forked in the server first
sends the content of the bulletin-file to the client via the socket connection, and then receives the
text that has to be added via the socket. In principle, a socket is a full-duplex connection, i.e. it
provides the possibility to communicate in two directions. By the system call shutdown (see man 2
shutdown) one of the communication partners can make the socket half-duplex by finishing reading
from a socket or writing to a socket. The (partial) finishing a socket by shutdowncan be important
for the correct ending of the communication process. If a write process is finished, but the
socket remains open for writing, a read process gets stuck. Therefore, take care that a (par-
tial) socket shutdown is performed, if the bulletin file has been sent by the server, or the text
message has been sent by the client, if this is necessary for the correct ending of the process
that can read from the socket.

It is the best strategy to start with the client program and test it using the demo server.
Bulletin client



1. Fill in the framework given for sockClient.c. For information on i/o-functions (f)open, read,
write and (f)close see the manual pages. The client must receive the bulletin-file and send
the txt message. It can make the implementation easier to parallelize these client activities,
in place of executing them sequentially. As a consequence the client is split into a read and a
write process by fork .

2. Translate the program using the make mechanism.

3. Test the bulletin client in combination with the program serverDemo. The effect of the client
program must be similar effect of the clientDemo.

4. Care for a well working client program before you continue. Follow the check list below before you show
it to the student assistants.

0.0.1 Checklist for bulletin client

1. Assume, the bulletin-client performs reading and writing in parallelusing an extra forked
process. Explain why in this case it is not necessary to know when reading from the
socket has ended before writing starts. How do we care that such an extra read process
finishes properly?

2. Control the correct finishing of the processes via the socket communication.

Bulletin-server

1. Complete the given framework of sockServer.c.

2. Test the socket connection between your own sockClient and sockServerwithin the same system.
Do this using different virtual consoles or x-terminals. The effect of the client/server-programs must be
similar to the ones of the demo-versions. Make sure that a socket-connection terminates correctly and
no client or server processes get stuck on the socket.

3. Test the bulletin-serveron your system by making contact from the satellite system with the server
using a client process.

4. Show this assignment together with the bulletin daemon.

The goal of the following assignment is to let the bulletin-server take the role of a daemon in the
system. A daemon is a system process running in the background independent of a user, i.e. even
when the user logs out it continues. A daemon is not linked to a terminal, where error messages can
be sent to. Moreover, a daemon has to be protected against signals that could stop the process by
accident. The most important steps to make a daemon from a bulletin-serverare:

By a twofold fork a grandchild process is generated that works as server process indepen-
dent from its start environment. The starting parent process and the first child process are
terminated. Error messages have to be avoided, and have to be written to a file otherwise.

Bulletin daemon

1. See the program sockDaemon.c. This program is the daemon-version of the framework program
sockServer.c. In this version we assume a fixed port number for the socket connections.

2. Adapt the framework sockDaemon.c similar to the earlier assignment, such that the daemon
functions as bulletin-server . Take care that all test and/or error messages are written to a file.

3. Test the bulletin-server-daemonusing client processes as in the previous assignment.

4. See the presence and the status of the daemon using the command ps -x. Check that the daemon
is still present after logout. The daemon can be killed with the command killall followed by the
name of the daemon program.

5. Show the assignments to a student assistant.



0.0.2 Checklist for bulletin server and daemon

1. Try to communicate via telnetwith the bulletin-server.

2. Did you test the bulletin-server and/or bulletin-daemonon your system with a client-process
from the satellite system?

3. Think of the reasons why in the bulletin-daemon contains no printf -statements and all error
messages are written to a logfile.

4. Before terminating yourself clean up the bulletin files if not saved in your own .home
directory.


