Logic Equivalence Checking Has Arrived
For FPGA Developers

William McDonald and Janny Liao
Semiconductor Test Division
Teradyne, Inc.
Boston, MA 02118-2238
Email: {william_mcdonald, janny liao}@notes.teradyne.com

Abstract—Logic Equivalence Checking (LEC) long ago
became a standard tool for developing Custom and
Application Specific Integrated Circuits (ASICs). For ASICs,
LEC tools have proven to be the best technology to
exhaustively check for errors introduced by logic synthesis and
physical implementation tools, and by netlist Engineering
Change Order (ECO) edits. In contrast, due to the lack of
viable LEC tools for Field Programmable Gate Arrays
(FPGAs), FPGA development has remained in the dark ages,
dependent on a combination of Register Transfer Level (RTL)
Linting, Gate Level simulations and costly Lab Validation
efforts to expose problems that could be introduced by the
back-end physical implementation process. RTL Linting, Gate
Level simulations and Lab Validation efforts are not
exhaustive, leaving the potential for bugs to disrupt later stages
of product development, or worse, to be shipped to the
customer.

In addition, a recent trend has been for FPGA developers to
reduce or skip gate level simulation for the same reasons that
developers did for ASICs. Many product developers accept
this tradeoff today because FPGAs offer re-programmability
without suffering Non-Recurring Engineering (NRE) costs or
fabrication delays. However, this still leaves their design
verification blind to the back-end process and dependent on
the reliability and maturity of the back-end tools, or on Lab
Validation.

Teradyne has been working since 2003 with synthesis and
verification EDA tool vendors and our key FPGA providers to
deploy an RTL to post-synthesis LEC process for FPGAs. The
results proved to be viable and valuable for production use in
our FPGA development process.

This paper documents why LEC is as important for FPGAs as
it is for ASICs, presents how it can be deployed in an existing
development process, and provides real-life examples of how
LEC has improved our confidence in our production FPGAs.

I. INTRODUCTION

Logic Equivalence Checking (LEC) is a formal
verification tool that compares a reference design against a

154

derived design to prove equivalence or to report differences.
LEC does not require test patterns. Instead, LEC uses
Boolean arithmetic techniques to prove equivalence between
two design netlists. Although LEC uses sophisticated formal
algorithms to identify, map, and compare nodes in the
netlists, the complexity is hidden from the user. In addition,
the formal algorithm techniques are fast compared with
simulation based tools. Today’s tools, originally developed
for Application Specific Integrated Circuits (ASICs), are
faster and easier than ever to use with Field Programmable
Gate Arrays (FPGAs).

This paper aims to increase momentum in this
technology area by inspiring more companies to evaluate
LEC in their own projects and by providing pointers through
examples for others to use.

IL.

The roots of today’s LEC tools grew out of the demands
of aggressive ASIC development schedules that required
quick validation at each milestone and each large or
incremental design change.

THE NEED FOR LEC TAKES SHAPE

In the primitive days of ASIC development, designs were
captured with schematics and verified by running compute
intensive gate level simulations with labor intensive, hand-
written tests. Around the late 1980°s, Register Transfer
Level (RTL) coding and synthesis revolutionized the
industry by improving functional simulation speeds by an
order of magnitude. Continual improvement in the speed of
simulators and computers also contributed. Even with these
significant advancements, the ASIC development process
still required full gate level simulation at each incremental
milestone in the development cycle. Gate Level simulations
validated the synthesis results, and analyzed pre- and post-
route timing. Gate level simulations also checked that the
insertion of test features and late Engineering Change Order
(ECO) changes did not alter the design intent. The ASIC
design process remained simulation intensive and restricted
by simulation throughput.

In addition, a big flaw with RTL and gate level
simulation is the lack of verification coverage due to the
difficulty of writing tests that exercise all the functional
paths in the design. This problem increases exponentially
with design size. As a result, the quality of verification is
limited by the availability and quality of functional tests.

Over time, ASIC design teams became exasperated as
they dealt with competitive schedule pressures and
increasing gate counts. They coped with the problem by
running only a subset of carefully chosen RTL tests in gate
level simulation to reduce runtime. Developers were able to
use static timing analysis, the older cousin of LEC, to replace
the more limited timing checks that gate level simulation
provided. However, the reduced set of tests run in gate level
simulation still exposed projects to discrepancies in synthesis
tool releases, errors from the insertion of test functions, and
the ever tempting hand edits to meet timing or repair a bug.

LEC tools were introduced by companies like Chrysalis
Symbolic Design, Inc. and Lucent Technologies’ Bell Labs
Design Automation group around 1995, but were slow to
gain market acceptance. The technology, originally
developed by mathematics research departments of
universities as far back as the 1960’s [1], suffered from a
steep learning curve because the early tools had primitive
mapping algorithms requiring a more complicated setup
process. In addition, its radically orthogonal approach to the
traditional design flow hampered adoption by the industry.

Today, LEC tools have since proven to be much faster
than gate level simulations. Also, LEC verification coverage
is inherently exhaustive because of the mathematical
methods it uses. In the beginning, these major features were
not trusted the way gate level simulations were.

Although taboo in the mid 1990’s, by the late 1990s it
became commonplace to skip gate level simulation as
synthesis tools matured and gate counts increased [2]. Some
teams relied on LEC to mitigate the risks, some tried
hardware emulation in the same spirit of gate level
simulation [3], and other teams just accepted the risks.
Ultimately, with Non-Recurring Engineering (NRE) costs
rising, ASIC and IC foundries required that LEC tools be run
at each milestone, which cemented broad use of LEC for
ASIC development.

Meanwhile, FPGA companies were slowly increasing
design capacity and gaining market share by providing a
lower entry point to the industry with no NRE cost. To
lower the entry cost further, the major FPGA companies
provided many of the required Electronic Design
Automation (EDA) tools for free. As a result, the EDA
industry largely ignored the FPGA market.

LEC tools were also not required for the majority of early
FPGAs. Many FPGAs were targeted for either ASIC
prototyping or other low volume applications, requiring
small verification efforts. The major attraction of FPGAs,
the ability to easily iterate when problems were found late in
the lab or in the field, also reduced the need for LEC.

155

This has changed. FPGAs are facing the same pattern of
escalating design complexity and schedule pressure as
ASICs. FPGA teams are relying on RTL simulation, static
timing analysis, and prototype validation efforts in the lab in
favor of the less effective method of gate level simulation.
As design complexity and size continue to expand, the next
logical step for FPGA developers is to adopt LEC into their
design methodology.

III.

Now is a turning point in FPGA history where we predict
FPGA developers will begin taking advantage of LEC the
same way that ASIC developers did. The most compelling
benefits of LEC are:

THE BENEFITS OF LEC

e Lessreliance on gate level simulation.

Boosted confidence in new tool revisions for
synthesis and place & route.

Watch-dog for poor RTL coding areas in the design.

Nearly exhaustive proof of equivalence without
writing test patterns.

Decreased risk of missing a bug inserted by the
back-end process.

Identification of unreachable logic, leading to power
and area reduction.

Who Should Use LEC

Companies that can ill afford the high cost of lab
iterations or delivery of bad FPGAs to customers.

Military, medical, and aeronautical designs, or
projects demanding high quality and customer
satisfaction, fit naturally with this list of key
benefits.

Large FPGA projects that need to mitigate risk from
running only a subset of tests in post place & route
gate level simulation.

Projects that wish to keep watch over the back end
process and coding quality even when no bugs are
found.

FPGA companies that develop Intellectual Property
(IP), as their customers expect the IP to be well
coded and bug-free.

B. Teradyne’s Transistion to LEC

Teradyne develops a large number of FPGAs and
experienced the ills from not having LEC capabilities many
times. For example, while Teradyne’s Tools and
Technology group was working with our EDA and FPGA
vendors testing alpha releases of LEC applications with real
FPGA designs, a designer in the company came across a test
that failed in gate level simulation but didn’t fail in RTL
simulation. The traditional debug approach lagged on for

weeks. Changing synthesis switches for state machine
remapping seemed to correct the bug, directing blame to the
synthesis tool. However, further study of the RTL code
revealed ambiguous and redundant coding. Blindness of the
synthesis process led to mistrust and prolonged frustration
until the true problem was discovered. This initiated our
company’s final step with LEC, to bring it into production
use on a real project; the project manager made a request to
implement LEC on all chips in the project. On this project
alone, we are reaping the benefits on three chips and are
continuing to work on a fourth from a second FPGA
supplier. Examples of issues already caught by the LEC
tools on this project and on others are presented later in the

paper.

IV. DEPLOYING LEC INTO AN EXISTING FPGA FLow

Fitting naturally to the existing FPGA design flow, the
LEC tool applies formal verification to the following places:

e RTL Source Code — This is the raw, pre-synthesized
design code. Our company uses Verilog. We have
not tried this process with VHDL.

e Post Synthesis Netlist — The synthesis software
generates this gate-level netlist in the Verilog format.
It is separate from the netlist generated for the place
& route software, which can be in a different format
such as EDIF.

e Post Place & Route Netlist — The place & route
software generates this gate-level netlist in the
Verilog format, which closely resembles the design
layout as it appears in the FPGA device.

The current verification flow supports equivalence
checking in two passes: the first pass is between the RTL
code and the Post Synthesis netlist, the second pass is

between the Post Synthesis netlist and the Post Place &
Route netlist. Figure 1 illustrates this methodology with
additional details. Observe that this two pass approach does
not upset the original flow for synthesis and place & route
prior to including LEC.

It may be possible to make the leap of directly comparing
RTL source code against the place & route netlist, but using
two smaller steps as shown in Figure 1 reveals which of the
steps could be flawed and reduces the complexity of changes
to be resolved for each one.

Along with the Verilog netlist, the synthesis tool also
outputs files containing verification information about the
optimizations done to the design. This information provides
hints to the LEC tool about such things as signal and instance
renaming, register merging and replication, state machine re-
encoding, sequential optimization, etc. These optimizations
are aggressive, and their incorporation into the LEC flow is
critical to the automation of the mapping process. This
points out that the LEC vendor must work cooperatively with
the synthesis tool and FPGA vendors to ensure the right
information is available for successful tool performance.

LEC tools perform proof of equivalence by using a three
phase process: setup, mapping and comparing.

The source input, such as RTL Verilog code, is called the
golden netlist. ~ The transformed input, such as the
synthesized design, is called the revised netlist. During the
setup phase, the LEC tool loads both of these netlists.

In the mapping phase, LEC attempts to map known
netlist differences using the synthesis hints along with
additional inputs from the user. The tool builds a table of
key points from primary inputs and outputs, internal flip
flops and black box logic in the golden netlist.

Figure 1. Recommended LEC Verification Flow

[RIL

Source Code
| Files Golden
~ Script)

Verif Info

Synthesis
Verllog Netlist

Edif Netlist

Place & Route
Tool

Verllog Netlist

a8
Programming
File

~FPGA
[Hardware)

“_ Prototype

‘ LEC Tool

| (Analysis.\"
(Pass 1) | Report
s

LEC Tool | (Analysis |
(Pass2) Report
| ‘

I Script File
Write)
Script ‘

Revised

In the comparison phase, the tool begins matching points
in the revised netlist to points in the mapping table. Some
points are easy to match because they have the same name or
use between netlists, while others have been significantly
renamed or combined within the hierarchy. With hints from
the synthesis tool, use of renaming rules, and control of the
hierarchy, these points all become matched. After matching,
the comparison phase checks the cones of combinational
logic connected to each pair of matched points to test
whether they are logically equivalent.

V. MAKING LEC WORK

Although our LEC tool flow uses a specific synthesis
engine and LEC application, we choose to avoid identifying
them in an effort to present our material in a vendor-neutral
format. Currently, there are several successful and popular
FPGA tool flows, not to mention multiple FPGA suppliers.
Without endorsing specific suppliers, here are some points to
consider on selecting and setting up an LEC tool to fit into
your existing design flow.

A. Choosing an LEC Tool

When choosing an LEC tool for FPGA work, it is
essential to find one that works with your synthesis tool and
supports your FPGA architecture. If your synthesis tool does
not support any stable LEC tools on the market, then you
will either need to change your synthesis tool, or explore a
collaborative working arrangement with willing suppliers to
help bring a new tool along, as Teradyne has. This can be
challenging, rewarding, and educational for your company.

Once an LEC tool is chosen, we recommend evaluating it
on a trial basis with one or more stable design snapshots until
the evaluation is complete. This is also a good opportunity
to assess the vendor’s commitment to support. In the process
of learning how to make the tool map the netlists correctly,
you will have many opportunities to interact with them.
LEC, being a new tool in the FPGA flow, will require time
to become familiar with its capabilities. The tool suppliers
can be an excellent source of help.

At this point, the new tool user will realize that it takes
time and effort to get LEC to map correctly. The ASIC
design community has complained before that LEC tools are
difficult to use [3]. In fact, the new FPGA tools were
derived from ASIC tools and must be learned through
practice. Running the tool with a basic setup is easy, but
discovering all details required to get it to map correctly
requires experience with the tool, trial and error with the
setup commands, and debug with the tool’s user interface.

In the face of this, tool developers have made an effort to
hide complexity by developing advanced mapping
algorithms and passing information from the synthesis tool
to the LEC run script. Although passing concealed
information increases the risk that LEC will use the same
assumptions as the synthesis tool, this approach is ideal for

157

the FPGA community, which has become comfortable with
the highly automated and integrated nature of its synthesis
and place & route tool suite. Also, synthesis algorithms for
FPGAs have become so advanced in the last few years that
passing along hints are required. A developer familiar with
their RTL design can expect to spend about one to two
weeks getting a new design to run through the LEC process.

B. Setting Up a Script to Run LEC

The first step in using the LEC flow is to set up the
synthesis tool’s run-time switches to generate a netlist in the
Verilog format. We have been turning off re-pipelining and
retiming optimizations in our synthesis. Turning these
optimizations off may not be necessary in the future given
the steady progress that LEC and synthesis tools are making,
but we haven’t strongly relied on these features anyway and
this provides a simpler starting place.

The second step is to create a run script for the LEC tool
that can be used reiteratively while the process is debugged.
The synthesis tool we use has a unique interface to our LEC
tool in that it generates a script intended to work directly
with LEC. This script jumpstarts the process, getting results
quickly. The script contains LEC commands which are hints
from the synthesis step about the optimizations performed on
the design. With this script, some of our designs have
completed on the first try! This is a strong example of
cooperation in the FPGA industry today, given that the tools
were all developed at different companies.

The LEC run script has two sub steps. The first sub step
reads in both netlists while applying some settings to them.
These settings do such things as set up black boxes for
Random Access Memories (RAMs) and multipliers, and
flatten some of the hierarchy. The second sub step maps the
two netlists, compares them, and reports the results. Figure 2
is a real script showing examples of some basic LEC
commands.

C. Achieving Proof of Netlist Equivalence

The LEC tool reports both equivalent and nonequivalent
nodes once the run-script finishes without setup errors.
Inevitably, the first time through this process, LEC identifies
points between the two netlists that do not map properly.
Tables I and II show reformatted output from a real, albeit
imperfect, LEC run.

These tables introduce the term black box, a common
occurrence in LEC work for FPGAs. Black boxes identify
FPGA logic that the LEC tool ignores. RAM, multiplier, and
Phase Locked Loop (PLL) cores typically need to be black
boxed. Other good examples include the generated FPGA 1P
cores that bypass the synthesis process and typically, but
unfortunately, need to be ignored by LEC.

Table I states that LEC proved 5548 key points to be
equivalent, but found problems with 466 other key points.
Although these points in the golden and revised netlists

mapped with each other, the tool reported discrepancies
between the cones of logic driving them.

Figure 2. Sample Script for a Synthesis to Place & Route LEC run.

// Set netlist parsing options. The "notranslate" commands

// select the module names that are interpreted as black boxes.
/

set log file projectl.log -replace

add notranslate module RAMB* X RAMB* -library -both
add notranslate module \

projectl sr16x32 projectl _sr29x16 project]l ramlkx18\
projectl _ramlkx25 projectl mul24x24\

projectl _mull0x8 -both

add notranslate module project] mul24x24 1 -revised

add notranslate module project] ramlkx25 1 -revised

/

// Read in golden and revised netlists.

/

read design -file longfin_top.vlc -verilog2k projectl top bb.v \
projectl top.vm -verilog2k -golden -root projectl top

read design -file projectl top.vlc -verilog2k \
projectl top par cecn.v -verilog2k -revised -root projectl top
/

// Generate netlist parsing reports.

/

report messages

report black box

report design data

report floating signals

/

// Set mapping options.

/

set undriven signal 0 -revised

set flatten model -seq_constant

set mapping method -nobbox name match

add renaming rule r3 "VQ r e g" "" -both

add renaming rule r4 "_Z\[%d\]$" "[@]1]" -type DFF \

-type DLAT -golden

add renaming rule 15 "_Z$" "" -type DFF -type DLAT -golden
/

// Run equivalence checker.

/

set sys mode lec

add compare point -all

compare
usage
exit
TABLE 1. EQUIVALENCE ANALYSIS INFORMATION
Primary D Flip D Black
Output Flop Latch Box Total
Equivalent 51 5390 4 3 5548
Non-equivalent 0 463 0 3 466
TABLE II. NETLIST KEY POINT MAPPING ANALYSIS
Golden: D Flip Flop Black Box Total
Unmapped: 10 0 10
Revised:
Unmapped: 2317 30 2347
Unreachable: 474 0 474

158

Table II shows unmapped key points. Here, LEC tried to
map 2317 D flip flops in the revised netlist to similar flip
flops in the golden netlist, but could not find matches either
by name or by function. There are also 30 black boxes that
are not mapped. These problems are indicators of what went
wrong. It is often easiest to start resolving these problems by
working on the black box problems first, since these are
usually indicating a fundamental problem with hierarchy.

In the run that produced these tables, an excessively
flattened netlist caused the problems. RAM designs in the
golden netlist contained multiple RAM cores stitched
together and were black boxed as a whole unit. In the
revised, flattened netlist, each RAM core was black boxed
separately. This gave a larger number of black boxes in the
revised netlist that had nothing to map to in the golden
design, throwing off the counts. By working with the netlist
generator in the FPGA place & route software, a hierarchical
netlist was produced that gave the LEC tool a chance to
black box the upper hierarchical module for this RAM
design, leading to a realistic comparison of black boxes
between the designs.

The LEC tool Teradyne uses has a Graphics User
Interface (GUI) that provides side-by-side comparison of
mapped points along with an indication of whether the points
are equivalent. The GUI also offers a diagnosis window to
show all signals influencing a key point along with an
indication of which signals were likely to be the problem.
From here it is easy to launch a schematic tool that shows the
circuits for both the golden and revised designs. The GUI
offers many clues for what to change in the setup process to
make the tool run to completion. Table III summarizes four
common symptoms and solutions that Teradyne observed
across several FPGA designs.

VL

Over the last two years, during alpha and beta testing of
the LEC flow, Teradyne ran about 10 FPGA designs from
around the company through the LEC tool flow. These
experiments contained design variations that often found
bugs in the LEC tool, the place & route tool, or the synthesis
information files that needed corrections from the tool
developers. Over time, these problems decreased and the
LEC runs succeeded. Through this experience, Teradyne
learned from the examples that follow.

LESSONS LEARNED FROM REAL LIFE EXAMPLES

Surprisingly, LEC is an effective tool at screening
designs for poor RTL coding style. Offering a second
opinion to synthesis, it parses the code to decide what each
statement means. One chip we tried gated an input signal
with the asynchronous reset of an “always” block. The code
implemented this gating inside an “if” block traditionally
reserved for just one reset input. The synthesis tool
responded by placing the gate before the asynchronous reset
pin of the register while the LEC tool left the global reset
signal on the register’s asynchronous reset pin and assumed a
synchronous reset with the new input. There are more
descriptive ways to code the RTL to consistently obtain

either outcome, so this example can be considered poor
coding style.

Some designers are still misusing the synthesis
directives, ‘//parallel case” and “//full case.” LEC
exemplifies that these directives are not needed in modern
RTL design work. If using these directives causes a change
in the synthesis outcome, the synthesized netlist will not
match the broader function of the RTL source code. This
could be observed as a difference between gate level and
RTL simulations, but it would require having a test to cover
the conflicting condition. LEC catches this error
automatically when there is a logical impact from the
directives without depending on a test. Seeing LEC point
out this problem can spark a useful debate on your team
about the use of synthesis directives.

Another design had constructed a small first-in first-out
(FIFO) memory from an array of registers. The designer
routinely followed a team rule to connect an asynchronous
reset to each register in the array. Our Verilog LINT (syntax
checker) tool even enforced this rule. The synthesis tool
inferred a RAM cell for this design that did not have an
equivalent asynchronous reset. The synthesized design was
not equivalent and it could have led to a functional problem.
We immediately tried a later release of the synthesis tool,
which did not infer the RAM, choosing instead to build the
FIFO from an array of flip flops. This is probably the best
response for the synthesis tool. If we want to infer the RAM,
we must write code that is exactly compatible with the RAM
IO interface. We can also be more direct and specify the
RAM cell in the code, permitting us to drop the
asynchronous reset without violating our register reset LINT
rule.

On one chip, an LEC run indicated about 4 unconnected
nets in the post place & route Verilog netlist. These went
away in the next release of the FPGA place & route tool.
We suspect these unconnected inputs only existed in the
Verilog netlist and not in the programming file for the
device. Similarly, a second chip indicated unconnected
inputs to Double Data Rate PAD cells. For this design, the
FPGA supplier quickly gave us a library update to solve this
problem. For this example, the supplier confirmed that the
unconnected inputs were not making their way into the
programmed device.

Although these experiences have proven to Teradyne that
the benefits of LEC are real, the tool flow still leaves two
situations uncovered:

1. The final FPGA programming file is generated
separately and thus deviates from the Verilog netlists
used for LEC. The final comparison from the
synthesis Verilog netlist to the post place & route
Verilog netlist is, unfortunately, still slightly blind to
the output file used to program the device. It is also
possible to find errors in the LEC path that do not
exist in the programmed device.

2. LEC does not verify or evaluate the behavioral
models from the FPGA supplier for RAMs and
multipliers that become black boxed. This is not
really a problem LEC should be expected to solve,
but many new LEC users fall into the trap of
assuming LEC automatically covers these models.
Although a verification problem area for the
engineer, these models do not actually proceed into
the synthesis flow. Teradyne has discovered
blocking/non-blocking bugs in these models a
number of times during lab debug and encourages
FPGA suppliers to improve the IP they deliver.

VIL

The methodology for FPGA development is following
the historical progression of ASIC development as designs
swell in size and complexity, leading to the adoption of LEC
as the next logical step in the evolutionary process. In
particular, schedule pressure and design complexity are
driving the methodology to rely on static timing analysis,
flexible and quick prototyping, and LEC in favor of gate
level simulation, which can no longer be completed in time
or with enough coverage to provide the trust that it once did.

CONCLUSIONS

The EDA industry has recently transitioned some popular
ASIC LEC tools into a production FPGA flow. Teradyne
participated in this transition by engaging in a cooperative
relationship with EDA and FPGA suppliers. We look
forward to further engagements between EDA and FPGA
suppliers and encourage the industry to support EDA
suppliers that invest in FPGA solutions.

TABLE III. SYMPTOMS AND SOLUTIONS TERADYNE OBSERVED THAT RESOLVED LEC CONVERGENCE
Symptom Likely Solution
The hierarchy in one netlist does not show the upper hierarchical
1 LEC does not apply black box rules the same way on both netlists. module for a RAM or a multiplier. Regenerate the revised netlist

with herarchy turned on.

Signals in the revised netlist do not map back to signals in the golden

Use the diagnosis GUI to diagnose signal name or instance name

merges or replications are not getting resolved in LEC mapping.

2 netlist. changes, then apply renaming rules and repeat.

3 One or two of the RAM or multiplier blocks are not black boxed Find the block names that need to be black boxed with the diagnosis
properly, but hierarchy seems to be correct. GUI and identify them by name in the “add notranslate” commands.
Use of the diagnosis GUI leads to suspicion that register instance The ‘ﬂattenmg and mapping op tions have not been set up right.

4 Review manual for use of these options. Request assistance from

LEC vendor for recommended settings.

159

In using the new tool, Teradyne gained more confidence
and improved design quality through LECs most compelling
benefits: less reliance on gate level simulation, screening for
poor coding style, watch-dog for tool release discrepancies,
and monitoring of unreachable logic. Teradyne hopes the
examples from this paper will inspire more companies to use
this proven technology.

ACKNOWLEDGMENT

The authors thank David Bacon for his extensive editing
feedback, Jason Mark, Steve Rideout, and Earl Shaw for
their proofreading, and Mike Pearlman, Dominic Viens and
Dominic Wong for their involvement in this LEC effort.

REFERENCES

[1] E. M. Clark and R. P. Kurshan Eds, “Volume three: computer-aided
verification ’90,” DIMACS series in discrete mathematics and
theoretical computer science, American Mathematical Society, 1990,
Preface, http://dimacs.rutgers.edu/Volumes/Vol03.html.

[2] Gale Morrison, “Formal verification adoption quickens,” Electronic
News, 4/17/2000, www.reed-
electronics.com/electronicnews/article/CA49273.html. The article
pinpoints when LEC gained acceptance for ASICs.

[31 Ralph Escherich, “Philips says Verplex was best buy,” Electronic
News, 10/30/2000, www.reed-
electronics.com/electronicnews/article/CA50680.html. The article
discusses the use of emulation with the company’s ICs in
combination with a popular LEC tool from the late 1990’s.

160

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

