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Abstract—Logic Equivalence Checking (LEC) long ago 
became a standard tool for developing Custom and 
Application Specific Integrated Circuits (ASICs).  For ASICs, 
LEC tools have proven to be the best technology to 
exhaustively check for errors introduced by logic synthesis and 
physical implementation tools, and by netlist Engineering 
Change Order (ECO) edits.  In contrast, due to the lack of 
viable LEC tools for Field Programmable Gate Arrays 
(FPGAs), FPGA development has remained in the dark ages, 
dependent on a combination of Register Transfer Level (RTL) 
Linting, Gate Level simulations and costly Lab Validation 
efforts to expose problems that could be introduced by the 
back-end physical implementation process.  RTL Linting, Gate 
Level simulations and Lab Validation efforts are not 
exhaustive, leaving the potential for bugs to disrupt later stages 
of product development, or worse, to be shipped to the 
customer. 

In addition, a recent trend has been for FPGA developers to 
reduce or skip gate level simulation for the same reasons that 
developers did for ASICs.  Many product developers accept 
this tradeoff today because FPGAs offer re-programmability 
without suffering Non-Recurring Engineering (NRE) costs or 
fabrication delays. However, this still leaves their design 
verification blind to the back-end process and dependent on 
the reliability and maturity of the back-end tools, or on Lab 
Validation. 

Teradyne has been working since 2003 with synthesis and 
verification EDA tool vendors and our key FPGA providers to 
deploy an RTL to post-synthesis LEC process for FPGAs.  The 
results proved to be viable and valuable for production use in 
our FPGA development process. 

This paper documents why LEC is as important for FPGAs as 
it is for ASICs, presents how it can be deployed in an existing 
development process, and provides real-life examples of how 
LEC has improved our confidence in our production FPGAs. 

I. INTRODUCTION

Logic Equivalence Checking (LEC) is a formal 
verification tool that compares a reference design against a 

derived design to prove equivalence or to report differences.  
LEC does not require test patterns.  Instead, LEC uses 
Boolean arithmetic techniques to prove equivalence between 
two design netlists.  Although LEC uses sophisticated formal 
algorithms to identify, map, and compare nodes in the 
netlists, the complexity is hidden from the user.  In addition, 
the formal algorithm techniques are fast compared with 
simulation based tools.  Today’s tools, originally developed 
for Application Specific Integrated Circuits (ASICs), are 
faster and easier than ever to use with Field Programmable 
Gate Arrays (FPGAs). 

This paper aims to increase momentum in this 
technology area by inspiring more companies to evaluate 
LEC in their own projects and by providing pointers through 
examples for others to use. 

II. THE NEED FOR LEC TAKES SHAPE

The roots of today’s LEC tools grew out of the demands 
of aggressive ASIC development schedules that required 
quick validation at each milestone and each large or 
incremental design change. 

In the primitive days of ASIC development, designs were 
captured with schematics and verified by running compute 
intensive gate level simulations with labor intensive, hand-
written tests.  Around the late 1980’s, Register Transfer 
Level (RTL) coding and synthesis revolutionized the 
industry by improving functional simulation speeds by an 
order of magnitude.  Continual improvement in the speed of 
simulators and computers also contributed.  Even with these 
significant advancements, the ASIC development process 
still required full gate level simulation at each incremental 
milestone in the development cycle.  Gate Level simulations 
validated the synthesis results, and analyzed pre- and post-
route timing.  Gate level simulations also checked that the 
insertion of test features and late Engineering Change Order 
(ECO) changes did not alter the design intent.  The ASIC 
design process remained simulation intensive and restricted 
by simulation throughput. 
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In addition, a big flaw with RTL and gate level 
simulation is the lack of verification coverage due to the 
difficulty of writing tests that exercise all the functional 
paths in the design.  This problem increases exponentially 
with design size.  As a result, the quality of verification is 
limited by the availability and quality of functional tests. 

Over time, ASIC design teams became exasperated as 
they dealt with competitive schedule pressures and 
increasing gate counts.  They coped with the problem by 
running only a subset of carefully chosen RTL tests in gate 
level simulation to reduce runtime.  Developers were able to 
use static timing analysis, the older cousin of LEC, to replace 
the more limited timing checks that gate level simulation 
provided.  However, the reduced set of tests run in gate level 
simulation still exposed projects to discrepancies in synthesis 
tool releases, errors from the insertion of test functions, and 
the ever tempting hand edits to meet timing or repair a bug. 

LEC tools were introduced by companies like Chrysalis 
Symbolic Design, Inc. and Lucent Technologies’ Bell Labs 
Design Automation group around 1995, but were slow to 
gain market acceptance. The technology, originally 
developed by mathematics research departments of 
universities as far back as the 1960’s [1], suffered from a 
steep learning curve because the early tools had primitive 
mapping algorithms requiring a more complicated setup 
process.  In addition, its radically orthogonal approach to the 
traditional design flow hampered adoption by the industry. 

Today, LEC tools have since proven to be much faster 
than gate level simulations.  Also, LEC verification coverage 
is inherently exhaustive because of the mathematical 
methods it uses.   In the beginning, these major features were 
not trusted the way gate level simulations were. 

Although taboo in the mid 1990’s, by the late 1990s it 
became commonplace to skip gate level simulation as 
synthesis tools matured and gate counts increased [2].  Some 
teams relied on LEC to mitigate the risks, some tried 
hardware emulation in the same spirit of gate level 
simulation [3], and other teams just accepted the risks.  
Ultimately, with Non-Recurring Engineering (NRE) costs 
rising, ASIC and IC foundries required that LEC tools be run 
at each milestone, which cemented broad use of LEC for 
ASIC development. 

Meanwhile, FPGA companies were slowly increasing 
design capacity and gaining market share by providing a 
lower entry point to the industry with no NRE cost.  To 
lower the entry cost further, the major FPGA companies 
provided many of the required Electronic Design 
Automation (EDA) tools for free.  As a result, the EDA 
industry largely ignored the FPGA market.  

LEC tools were also not required for the majority of early 
FPGAs.  Many FPGAs were targeted for either ASIC 
prototyping or other low volume applications, requiring 
small verification efforts.  The major attraction of FPGAs, 
the ability to easily iterate when problems were found late in 
the lab or in the field, also reduced the need for LEC. 

This has changed.  FPGAs are facing the same pattern of 
escalating design complexity and schedule pressure as 
ASICs.  FPGA teams are relying on RTL simulation, static 
timing analysis, and prototype validation efforts in the lab in 
favor of the less effective method of gate level simulation.  
As design complexity and size continue to expand, the next 
logical step for FPGA developers is to adopt LEC into their 
design methodology. 

III. THE BENEFITS OF LEC 
Now is a turning point in FPGA history where we predict 

FPGA developers will begin taking advantage of LEC the 
same way that ASIC developers did.  The most compelling 
benefits of LEC are: 

• Less reliance on gate level simulation. 

• Boosted confidence in new tool revisions for 
synthesis and place & route. 

• Watch-dog for poor RTL coding areas in the design. 

• Nearly exhaustive proof of equivalence without 
writing test patterns. 

• Decreased risk of missing a bug inserted by the 
back-end process. 

• Identification of unreachable logic, leading to power 
and area reduction. 

A. Who Should Use LEC 
• Companies that can ill afford the high cost of lab 

iterations or delivery of bad FPGAs to customers. 

• Military, medical, and aeronautical designs, or 
projects demanding high quality and customer 
satisfaction, fit naturally with this list of key 
benefits. 

• Large FPGA projects that need to mitigate risk from 
running only a subset of tests in post place & route 
gate level simulation. 

• Projects that wish to keep watch over the back end 
process and coding quality even when no bugs are 
found. 

• FPGA companies that develop Intellectual Property 
(IP), as their customers expect the IP to be well 
coded and bug-free. 

B. Teradyne’s Transistion to LEC 
Teradyne develops a large number of FPGAs and 

experienced the ills from not having LEC capabilities many 
times.  For example, while Teradyne’s Tools and 
Technology group was working with our EDA and FPGA 
vendors testing alpha releases of LEC applications with real 
FPGA designs, a designer in the company came across a test 
that failed in gate level simulation but didn’t fail in RTL 
simulation.  The traditional debug approach lagged on for 
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weeks.  Changing synthesis switches for state machine 
remapping seemed to correct the bug, directing blame to the 
synthesis tool.  However, further study of the RTL code 
revealed ambiguous and redundant coding.  Blindness of the 
synthesis process led to mistrust and prolonged frustration 
until the true problem was discovered.   This initiated our 
company’s final step with LEC, to bring it into production 
use on a real project; the project manager made a request to 
implement LEC on all chips in the project.  On this project 
alone, we are reaping the benefits on three chips and are 
continuing to work on a fourth from a second FPGA 
supplier.  Examples of issues already caught by the LEC 
tools on this project and on others are presented later in the 
paper. 

IV. DEPLOYING LEC INTO AN EXISTING FPGA FLOW

Fitting naturally to the existing FPGA design flow, the 
LEC tool applies formal verification to the following places: 

• RTL Source Code – This is the raw, pre-synthesized 
design code.  Our company uses Verilog.  We have 
not tried this process with VHDL. 

• Post Synthesis Netlist – The synthesis software 
generates this gate-level netlist in the Verilog format.  
It is separate from the netlist generated for the place 
& route software, which can be in a different format 
such as EDIF. 

• Post Place & Route Netlist – The place & route 
software generates this gate-level netlist in the 
Verilog format, which closely resembles the design 
layout as it appears in the FPGA device.   

The current verification flow supports equivalence 
checking in two passes:  the first pass is between the RTL 
code and the Post Synthesis netlist, the second pass is 

between the Post Synthesis netlist and the Post Place & 
Route netlist.  Figure 1 illustrates this methodology with 
additional details.  Observe that this two pass approach does 
not upset the original flow for synthesis and place & route 
prior to including LEC. 

It may be possible to make the leap of directly comparing 
RTL source code against the place & route netlist, but using 
two smaller steps as shown in Figure 1 reveals which of the 
steps could be flawed and reduces the complexity of changes 
to be resolved for each one. 

Along with the Verilog netlist, the synthesis tool also 
outputs files containing verification information about the 
optimizations done to the design.  This information provides 
hints to the LEC tool about such things as signal and instance 
renaming, register merging and replication, state machine re-
encoding, sequential optimization, etc.  These optimizations 
are aggressive, and their incorporation into the LEC flow is 
critical to the automation of the mapping process.  This 
points out that the LEC vendor must work cooperatively with 
the synthesis tool and FPGA vendors to ensure the right 
information is available for successful tool performance. 

LEC tools perform proof of equivalence by using a three 
phase process:  setup, mapping and comparing. 

The source input, such as RTL Verilog code, is called the 
golden netlist.  The transformed input, such as the 
synthesized design, is called the revised netlist.  During the 
setup phase, the LEC tool loads both of these netlists. 

In the mapping phase, LEC attempts to map known 
netlist differences using the synthesis hints along with 
additional inputs from the user.  The tool builds a table of 
key points from primary inputs and outputs, internal flip 
flops and black box logic in the golden netlist. 

Figure 1. Recommended LEC Verification Flow 

156



In the comparison phase, the tool begins matching points 
in the revised netlist to points in the mapping table.  Some 
points are easy to match because they have the same name or 
use between netlists, while others have been significantly 
renamed or combined within the hierarchy.  With hints from 
the synthesis tool, use of renaming rules, and control of the 
hierarchy, these points all become matched.  After matching, 
the comparison phase checks the cones of combinational 
logic connected to each pair of matched points to test 
whether they are logically equivalent. 

V. MAKING LEC WORK

Although our LEC tool flow uses a specific synthesis 
engine and LEC application, we choose to avoid identifying 
them in an effort to present our material in a vendor-neutral 
format.  Currently, there are several successful and popular 
FPGA tool flows, not to mention multiple FPGA suppliers.  
Without endorsing specific suppliers, here are some points to 
consider on selecting and setting up an LEC tool to fit into 
your existing design flow. 

A. Choosing  an  LEC Tool 
When choosing an LEC tool for FPGA work, it is 

essential to find one that works with your synthesis tool and 
supports your FPGA architecture.  If your synthesis tool does 
not support any stable LEC tools on the market, then you 
will either need to change your synthesis tool, or explore a 
collaborative working arrangement with willing suppliers to 
help bring a new tool along, as Teradyne has.  This can be 
challenging, rewarding, and educational for your company. 

Once an LEC tool is chosen, we recommend evaluating it 
on a trial basis with one or more stable design snapshots until 
the evaluation is complete.  This is also a good opportunity 
to assess the vendor’s commitment to support.  In the process 
of learning how to make the tool map the netlists correctly, 
you will have many opportunities to interact with them.  
LEC, being a new tool in the FPGA flow, will require time 
to become familiar with its capabilities.  The tool suppliers 
can be an excellent source of help. 

At this point, the new tool user will realize that it takes 
time and effort to get LEC to map correctly.  The ASIC 
design community has complained before that LEC tools are 
difficult to use [3].  In fact, the new FPGA tools were 
derived from ASIC tools and must be learned through 
practice.  Running the tool with a basic setup is easy, but 
discovering all details required to get it to map correctly 
requires experience with the tool, trial and error with the 
setup commands, and debug with the tool’s user interface. 

In the face of this, tool developers have made an effort to 
hide complexity by developing advanced mapping 
algorithms and passing information from the synthesis tool 
to the LEC run script.  Although passing concealed 
information increases the risk that LEC will use the same 
assumptions as the synthesis tool, this approach is ideal for 

the FPGA community, which has become comfortable with 
the highly automated and integrated nature of its synthesis 
and place & route tool suite.  Also, synthesis algorithms for 
FPGAs have become so advanced in the last few years that 
passing along hints are required.  A developer familiar with 
their RTL design can expect to spend about one to two 
weeks getting a new design to run through the LEC process. 

B. Setting Up a Script to Run LEC 
The first step in using the LEC flow is to set up the 

synthesis tool’s run-time switches to generate a netlist in the 
Verilog format.  We have been turning off re-pipelining and 
retiming optimizations in our synthesis.  Turning these 
optimizations off may not be necessary in the future given 
the steady progress that LEC and synthesis tools are making, 
but we haven’t strongly relied on these features anyway and 
this provides a simpler starting place. 

The second step is to create a run script for the LEC tool 
that can be used reiteratively while the process is debugged.  
The synthesis tool we use has a unique interface to our LEC 
tool in that it generates a script intended to work directly 
with LEC.  This script jumpstarts the process, getting results 
quickly.  The script contains LEC commands which are hints 
from the synthesis step about the optimizations performed on 
the design.  With this script, some of our designs have 
completed on the first try!  This is a strong example of 
cooperation in the FPGA industry today, given that the tools 
were all developed at different companies. 

The LEC run script has two sub steps.  The first sub step 
reads in both netlists while applying some settings to them.  
These settings do such things as set up black boxes for 
Random Access Memories (RAMs) and multipliers, and 
flatten some of the hierarchy.  The second sub step maps the 
two netlists, compares them, and reports the results.  Figure 2 
is a real script showing examples of some basic LEC 
commands. 

C. Achieving Proof of Netlist Equivalence 
The LEC tool reports both equivalent and nonequivalent 

nodes once the run-script finishes without setup errors.  
Inevitably, the first time through this process, LEC identifies 
points between the two netlists that do not map properly.  
Tables I and II show reformatted output from a real, albeit 
imperfect, LEC run. 

These tables introduce the term black box, a common 
occurrence in LEC work for FPGAs.  Black boxes identify 
FPGA logic that the LEC tool ignores.  RAM, multiplier, and 
Phase Locked Loop (PLL) cores typically need to be black 
boxed.  Other good examples include the generated FPGA IP 
cores that bypass the synthesis process and typically, but 
unfortunately, need to be ignored by LEC. 

Table I states that LEC proved 5548 key points to be 
equivalent, but found problems with 466 other key points.  
Although these points in the golden and revised netlists 
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mapped with each other, the tool reported discrepancies 
between the cones of logic driving them. 

Figure 2. Sample Script for a Synthesis to Place & Route LEC run. 

TABLE I. EQUIVALENCE ANALYSIS INFORMATION

Primary 
Output 

D Flip 
Flop 

D
Latch 

Black 
Box Total 

Equivalent 51 5390 4 3 5548 
Non-equivalent 0 463 0 3 466 

TABLE II. NETLIST KEY POINT MAPPING ANALYSIS

Golden: D Flip Flop Black Box Total 

  Unmapped: 10 0 10 

Revised:    

  Unmapped: 2317 30 2347 

  Unreachable: 474 0 474 

Table II shows unmapped key points.  Here, LEC tried to 
map 2317 D flip flops in the revised netlist to similar flip 
flops in the golden netlist, but could not find matches either 
by name or by function.  There are also 30 black boxes that 
are not mapped.  These problems are indicators of what went 
wrong.  It is often easiest to start resolving these problems by 
working on the black box problems first, since these are 
usually indicating a fundamental problem with hierarchy. 

In the run that produced these tables, an excessively 
flattened netlist caused the problems.  RAM designs in the 
golden netlist contained multiple RAM cores stitched 
together and were black boxed as a whole unit.  In the 
revised, flattened netlist, each RAM core was black boxed 
separately.  This gave a larger number of black boxes in the 
revised netlist that had nothing to map to in the golden 
design, throwing off the counts.  By working with the netlist 
generator in the FPGA place & route software, a hierarchical 
netlist was produced that gave the LEC tool a chance to 
black box the upper hierarchical module for this RAM 
design, leading to a realistic comparison of black boxes 
between the designs. 

The LEC tool Teradyne uses has a Graphics User 
Interface (GUI) that provides side-by-side comparison of 
mapped points along with an indication of whether the points 
are equivalent.  The GUI also offers a diagnosis window to 
show all signals influencing a key point along with an 
indication of which signals were likely to be the problem.  
From here it is easy to launch a schematic tool that shows the 
circuits for both the golden and revised designs.  The GUI 
offers many clues for what to change in the setup process to 
make the tool run to completion.  Table III summarizes four 
common symptoms and solutions that Teradyne observed 
across several FPGA designs. 

VI. LESSONS LEARNED FROM REAL LIFE EXAMPLES

Over the last two years, during alpha and beta testing of 
the LEC flow, Teradyne ran about 10 FPGA designs from 
around the company through the LEC tool flow.  These 
experiments contained design variations that often found 
bugs in the LEC tool, the place & route tool, or the synthesis 
information files that needed corrections from the tool 
developers.  Over time, these problems decreased and the 
LEC runs succeeded.  Through this experience, Teradyne 
learned from the examples that follow. 

Surprisingly, LEC is an effective tool at screening 
designs for poor RTL coding style.  Offering a second 
opinion to synthesis, it parses the code to decide what each 
statement means.  One chip we tried gated an input signal 
with the asynchronous reset of an “always” block.  The code 
implemented this gating inside an “if” block traditionally 
reserved for just one reset input.  The synthesis tool 
responded by placing the gate before the asynchronous reset 
pin of the register while the LEC tool left the global reset 
signal on the register’s asynchronous reset pin and assumed a 
synchronous reset with the new input.  There are more 
descriptive ways to code the RTL to consistently obtain 

// Set netlist parsing options.  The "notranslate" commands 
// select the module names that are interpreted as black boxes. 
//
set log file project1.log -replace 
add notranslate module RAMB* X_RAMB* -library -both 
add notranslate module \ 
project1_sr16x32 project1_sr29x16 project1_ram1kx18 \ 
project1_ram1kx25 project1_mul24x24 \ 
project1_mul10x8 -both 
add notranslate module project1_mul24x24_1 -revised 
add notranslate module project1_ram1kx25_1 -revised 
//
// Read in golden and revised netlists. 
//
read design -file longfin_top.vlc -verilog2k project1_top_bb.v \ 
project1_top.vm -verilog2k -golden -root project1_top 
read design -file project1_top.vlc -verilog2k \ 
project1_top_par_cecn.v -verilog2k -revised -root project1_top 
//
// Generate netlist parsing reports. 
//
report messages 
report black box 
report design data 
report floating signals 
//
// Set mapping options. 
//
set undriven signal 0 -revised 
set flatten model -seq_constant 
set mapping method -nobbox_name_match 
add renaming rule r3 "\/Q_r_e_g" "" -both 
add renaming rule r4 "_Z\[%d\]$" "[@1]" -type DFF \ 
-type DLAT -golden 
add renaming rule r5 "_Z$" "" -type DFF -type DLAT -golden 
//
// Run equivalence checker. 
//
set sys mode lec 
add compare point -all 
compare 
usage 
exit 
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either outcome, so this example can be considered poor 
coding style. 

Some designers are still misusing the synthesis 
directives, “//parallel_case” and “//full_case.”  LEC 
exemplifies that these directives are not needed in modern 
RTL design work.  If using these directives causes a change 
in the synthesis outcome, the synthesized netlist will not 
match the broader function of the RTL source code.  This 
could be observed as a difference between gate level and 
RTL simulations, but it would require having a test to cover 
the conflicting condition.  LEC catches this error 
automatically when there is a logical impact from the 
directives without depending on a test.  Seeing LEC point 
out this problem can spark a useful debate on your team 
about the use of synthesis directives. 

Another design had constructed a small first-in first-out 
(FIFO) memory from an array of registers.   The designer 
routinely followed a team rule to connect an asynchronous 
reset to each register in the array.  Our Verilog LINT (syntax 
checker) tool even enforced this rule.  The synthesis tool 
inferred a RAM cell for this design that did not have an 
equivalent asynchronous reset.  The synthesized design was 
not equivalent and it could have led to a functional problem.  
We immediately tried a later release of the synthesis tool, 
which did not infer the RAM, choosing instead to build the 
FIFO from an array of flip flops.  This is probably the best 
response for the synthesis tool.  If we want to infer the RAM, 
we must write code that is exactly compatible with the RAM 
IO interface.  We can also be more direct and specify the 
RAM cell in the code, permitting us to drop the 
asynchronous reset without violating our register reset LINT 
rule. 

On one chip, an LEC run indicated about 4 unconnected 
nets in the post place & route Verilog netlist.  These went 
away in the next release of the FPGA place & route tool.  
We suspect these unconnected inputs only existed in the 
Verilog netlist and not in the programming file for the 
device.  Similarly, a second chip indicated unconnected 
inputs to Double Data Rate PAD cells.  For this design, the 
FPGA supplier quickly gave us a library update to solve this 
problem.  For this example, the supplier confirmed that the 
unconnected inputs were not making their way into the 
programmed device.  

Although these experiences have proven to Teradyne that 
the benefits of LEC are real, the tool flow still leaves two 
situations uncovered: 

1. The final FPGA programming file is generated 
separately and thus deviates from the Verilog netlists 
used for LEC.  The final comparison from the 
synthesis Verilog netlist to the post place & route 
Verilog netlist is, unfortunately, still slightly blind to 
the output file used to program the device.  It is also 
possible to find errors in the LEC path that do not 
exist in the programmed device. 

2. LEC does not verify or evaluate the behavioral 
models from the FPGA supplier for RAMs and 
multipliers that become black boxed.  This is not 
really a problem LEC should be expected to solve, 
but many new LEC users fall into the trap of 
assuming LEC automatically covers these models.  
Although a verification problem area for the 
engineer, these models do not actually proceed into 
the synthesis flow.  Teradyne has discovered 
blocking/non-blocking bugs in these models a 
number of times during lab debug and encourages 
FPGA suppliers to improve the IP they deliver. 

VII. CONCLUSIONS

The methodology for FPGA development is following 
the historical progression of ASIC development as designs 
swell in size and complexity, leading to the adoption of LEC 
as the next logical step in the evolutionary process.  In 
particular, schedule pressure and design complexity are 
driving the methodology to rely on static timing analysis, 
flexible and quick prototyping, and LEC in favor of gate 
level simulation, which can no longer be completed in time 
or with enough coverage to provide the trust that it once did. 

The EDA industry has recently transitioned some popular 
ASIC LEC tools into a production FPGA flow.  Teradyne 
participated in this transition by engaging in a cooperative 
relationship with EDA and FPGA suppliers.  We look 
forward to further engagements between EDA and FPGA 
suppliers and encourage the industry to support EDA 
suppliers that invest in FPGA solutions. 

TABLE III. SYMPTOMS AND SOLUTIONS TERADYNE OBSERVED THAT RESOLVED LEC CONVERGENCE

 Symptom Likely Solution 

1 LEC does not apply black box rules the same way on both netlists. 
The hierarchy in one netlist does not show the upper hierarchical 
module for a RAM or a multiplier.  Regenerate the revised netlist 
with herarchy turned on. 

2 Signals in the revised netlist do not map back to signals in the golden 
netlist. 

Use the diagnosis GUI to diagnose signal name or instance name 
changes, then apply renaming rules and repeat. 

3 One or two of the RAM or multiplier blocks are not black boxed 
properly, but hierarchy seems to be correct. 

Find the block names that need to be black boxed with the diagnosis 
GUI and identify them by name in the “add notranslate” commands. 

4 Use of the diagnosis GUI leads to suspicion that register instance 
merges or replications are not getting resolved in LEC mapping. 

The flattening and mapping options have not been set up right.  
Review manual for use of these options.  Request assistance from 
LEC vendor for recommended settings. 
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In using the new tool, Teradyne gained more confidence 
and improved design quality through LECs most compelling 
benefits:  less reliance on gate level simulation, screening for 
poor coding style, watch-dog for tool release discrepancies, 
and monitoring of unreachable logic.  Teradyne hopes the 
examples from this paper will inspire more companies to use 
this proven technology.   
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