
Version: 2.2

Copyright © 2012 Skype. All Rights Reserved.

Skype Encoding Camera Specification

Last saved: 2012-10-22 Written by: Seungkoo Yang, Simon Wilson,
Stephan Lachowsky, Brent Weatherall

Approved by: Manrique Brenes

Status: Final Version: 2.2

Filename: Skype Encoding Camera Specification v2.2.

Security Classification: Public

Skype Encoding Camera Specification v2.2

Copyright © 2012 Skype. All Rights Reserved. Page ii

THIS UVC EXTENSION UNIT SPECIFICATION FOR ENCODING CAMERAS IS
MADE AVAILABLE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL SKYPE BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Skype Encoding Camera Specification v2.2

Copyright © 2012 Skype. All Rights Reserved. Page iii

Summary of Revisions

Version Date Comments Valid

1.0 2010-01-22 Initial draft for review 2010-01-22

1.1 2010-02-25 Second revision following external feedback

1.2 2010-04-30 Third revision following internal review

1.2.1 2010-06-16 Minor changes

1.3 2010-09-20

1.4 2011-05-27 Updated based on workshop proposals 2011-05-27

2.0 2011-08-10
Added new controls to maintain legacy
compatibility.

2011-08-10

2.1 2011-09-15
Corrected version control expected output and
bmControls(1) value. Added clarifications and
corrected spelling and grammar mistakes.

2011-09-15

2.2 2012-10-22
Added control for obtaining audio configuration
and added audio profile for Skype cameras.

2012-10-22

Page iv Copyright © 2012 Skype. All Rights Reserved.

Table of Contents

1 INTRODUCTION ... 7

1.1 CONVENTIONS .. 7

1.2 SCOPE ... 7

1.3 DEFINITIONS AND ABBREVIATIONS .. 7

2 REQUIREMENTS ... 8

2.1 VIDEO REQUIREMENTS OF THE DEVICE .. 8

2.1.1 Legacy Mode .. 8

2.1.2 Skype Transport Stream Mode... 8

2.2 AUDIO REQUIREMENTS OF THE DEVICE .. 9

2.2.1 Legacy Operations ... 9

2.2.2 Skype Audio Profile and Extension Unit ... 9

2.3 REQUIREMENTS OF THE HOST .. 10

3 SKYPE TRANSPORT STREAM .. 11

3.1 SKYPE TRANSPORT STREAM PACKET FORMAT ... 11

3.1.1 Stream Header Format .. 12

3.1.2 YUY2 Payload Format .. 14

3.1.3 NV12 Payload Format .. 14

3.1.4 MJPEG Payload Format .. 15

3.1.5 H.264 Payload Format ... 15

3.2 SKYPE TRANSPORT STREAM DECODING PROCESS ... 16

4 SKYPE UVC XU DESCRIPTOR ... 17

5 SKYPE UVC XU CONTROLS ... 19

5.1 GLOBAL CLASS CONTROLS ... 21

5.1.1 Version Control .. 21

5.1.2 Firmware Days Control .. 21

5.1.3 Last Error Control ... 22

5.1.4 StreamID Control ... 22

5.1.5 EndpointSetting Control ... 23

5.1.6 AudioConfiguration Control ... 23

5.1.7 Stream Format Probe and Commit Controls .. 27

5.1.8 StreamFormatProbeType Control .. 27

5.1.9 StreamFormatProbeWidth Control .. 28

5.1.10 StreamFormatProbeHeight Control ... 29

5.1.11 StreamFormatProbeFrameInterval .. 29

5.1.12 StreamFormatProbeBitrate ... 30

5.1.13 Dynamic BitrateControl Control ... 31

5.1.14 Dynamic FrameIntervalControl Control ... 32

5.1.15 GenerateKeyFrame Control.. 32

6 VIDEO OPERATIONAL MODEL .. 33

Skype Encoding Camera Specification v2.2

Copyright © 2012 Skype. All Rights Reserved. Page v

6.1 PROBE AND COMMIT PHASES .. 37

7 VIDEO EXAMPLES .. 39

8 AUDIO OPERATIONAL MODEL ... 40

9 VIDEO REFERENCES ... 40

Page vi Copyright © 2012 Skype. All Rights Reserved.

Table of Illustrations

Illustration 1: Skype Transport Stream .. 4
Illustration 2: Skype Transport Stream Packet .. 5
Illustration 3: YUY2 Payload Format ... 6
Illustration 4: NV12 Payload Format ... 7
Illustration 5: MJPEG Payload Format .. 7
Illustration 6: Correct UVC Frame with One Header ... 7
Illustration 7: Incorrect UVC Frame with Multiple Headers ... 8
Illustration 8: Operational State Transitions .. 16
Illustration 9: Probe and Commit Control Flow Example .. 18
Illustration 10: UVC Frame Containing Main Stream Only ... 19
Illustration 11: UVC Frame Containing Main And Capture Streams ... 20

Copyright © 2012 Skype. All Rights Reserved. Page 7

1 Introduction

1.1 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119.

The fields of each control are prefixed with the size of memory they occupy. The prefixes are as follows:

 b Byte

 w Word (two bytes)

 dw Double Word (four bytes)

1.2 Scope

The purpose of this document is to define a method for transmitting compressed video and preview
data for real-time streaming applications and to define a profile for acceptable Skype video and audio
operations, specifically Skype video conferencing. To this end a Skype Transport Stream Format and a
Skype Extension Unit (XU) are specified to accomplish low-latency compressed video transport on top of
the existing standardized Universal Serial Bus (USB) Video Class (UVC) infrastructure. In addition to
specifying a video transport mechanism and video operational profile, this document also defines an
audio operational profile along with a mechanism of communicating information regarding the audio
configuration of the camera and level of audio pre-processing for the purpose of improving Skype audio
post-processing. For obtaining and sending audio related data that is not supported by the standard
USB Audio Class (UAC), audio specific controls are defined in the Skype UVC XU. This specification only
addresses cameras communicating over USB to the host. Cameras using Wi-Fi are not considered in this
specification.

1.3 Definitions and Abbreviations

Skype Transport Stream

An encapsulation format providing timing and muxing for a number of payload streams.

Skype Transport Stream Packet

The smallest unit of a Skype Transport Stream, it is carried as a UVC frame.

Payload Stream

The reassembled sequence of payloads from a Skype Transport Stream, it contains one type of
video codec, or vendor-specific data.

http://tools.ietf.org/html/rfc2119

Page 8 Copyright © 2012 Skype. All Rights Reserved.

2 Requirements

2.1 Video Requirements of the Device

A device conforming to this specification MUST be able to operate in two video modes: legacy mode and
Skype Transport Stream Mode.

2.1.1 Legacy Mode

Legacy mode is the default power-up operating mode of a device. The device MUST function in
accordance with the standard UVC specification. The UVC video streaming interface intended for use as
the main capture stream of the device MUST advertise MJPEG format support including a minimum
resolution of 720p. MJPEG MUST be advertised because the UVC frame in Skype Transport Mode is
negotiated as MJPEG even though the contents are custom to the Skype Transport Stream Packet
Format. The device MAY support further formats and resolutions in legacy mode; however, they are not
required.

2.1.2 Skype Transport Stream Mode

When operating in Skype transport stream mode the device always transfers a Skype transport stream
despite the UVC format being negotiated as MJPEG.

 When operating in Skype Transport Stream Mode, the device MAY use one video interface or two video
interfaces. When using two video interfaces (dual endpoint mode), one of the interfaces MUST be
allocated to the main video stream and MUST be capable of an H.264 payload stream supporting 720p
constrained baseline profile level 3.1 at minimum. Optionally, the device MAY support other profiles,
constraint sets, levels, resolutions and/or entropy coding modes.

The device MUST be capable of simultaneously streaming a secondary YUY2 preview stream at
minimum resolutions of 160x120 and 160x90. Higher resolutions are permitted, but not required. The
preview stream MAY be carried on a secondary UVC video streaming interface in accordance with the
UVC specification. This means when using a secondary video interface for the preview stream in a raw
format, the stream need not be packetized in the Skype transport stream format. If a secondary UVC
video streaming interface is not available, then the device MUST be capable of including the preview as
a YUY2 payload stream inside the Skype transport stream on the single UVC video streaming interface.
The device MAY support other preview formats and resolutions in addition to the required YUY2 format;
however, it is not required.

If the device supports H.264 encoding on the preview stream and the preview stream is offered on a
secondary video interface, then the preview stream MUST send the H.264 video stream within the
Skype Transport Stream Mode (which is encapsulated by MJPEG). This means the preview stream will
advertise and be capable of streaming MJPEG in legacy mode.

The preview stream MUST have the same aspect ratio, zoom and cropping parameters as the main
stream (hence the preview support for 160x120 and 160x90).

Copyright © 2012 Skype. All Rights Reserved. Page 9

The device MUST support at least the following resolutions for the main stream:

 160x90

 160x120

 320x180

 320x240

 640x360

 640x480

 1280x720

2.2 Audio Requirements of the Device

If a SECS video device includes audio microphones, then a device conforming to this specification MUST
operate correctly without the use of the additional audio controls and support the following audio
profile. It MUST also support the audio configuration extension unit described in this document.

2.2.1 Legacy Operations

Legacy operations are the default power-up operating mode of a device. The device MUST function in
accordance with the standard UAC specification. Depending on the number of microphones and
whether or not beam-forming is processed within the device, cameras will enumerate one, two, three or
four audio endpoints. The endpoints MUST function normally if no Skype audio based UVC XU controls
are issued. When beam-forming is performed by the camera, one endpoint is expected. In the absence
of beam-forming the number of audio endpoints will vary. If audio data is passed through directly with
no pre-processing, then the number of microphones will match the number of audio endpoints or
channels (one, two, three or four). Some devices may perform mixing of internal signals but perform no
beam-forming. This produces a left and right audio channel even if three or four microphones are
present.

2.2.2 Skype Audio Profile and Extension Unit

A Skype Encoding Camera that includes microphones MUST support the following capabilities available
through standard UAC controls where applicable:

 16 KHz audio

 Analog gain controls (AGC)

Suggested non-mandatory capabilities:

 24 bit audio

 24 KHz audio

 48 KHz audio

In addition to these standard capabilities, data about the camera’s microphone spacing and general
audio capabilities is needed to facilitate Skype audio quality post processing. If a camera does not

Page 10 Copyright © 2012 Skype. All Rights Reserved.

perform beam-forming internally, the host should provide this processing in software (already included
with the Skype SDK) for enhanced audio quality. To facilitate software beam-forming, data regarding
the spacing of the camera’s microphones is required. If the camera provides two or three microphones
then one spacing value is needed. If the camera provides four microphones then two spacing values are
needed. Information regarding the amount of pre-processing performed is also required. To facilitate
correct processing, host software must also know if the audio data is down mixed to left and right or if
the audio data is simply passed through. If audio is already beam-formed, then the host software does
not need to perform any post-processing.

In addition to microphone spacing, Skype audio post-processing for SECS cameras also requires data
concerning the presence of voice activity functionality, noise suppression functionality, the gain range of
the microphones, the number of steps in the gain range and the recommended default gain step value
for a conference call.

The audio configuration XU control details the specifics of how the audio data is expected from the
camera.

2.3 Requirements of the Host

The following requirements apply to hosts which will operate a device in Skype transport mode. Other
hosts will be able to operate a device in Legacy mode without awareness of this specification.

The host MUST be able to transition the device from legacy mode into Skype transport stream mode,
through the manipulation of Skype Extension Unit controls. This transition happens at the behest of the
host, and the host MUST be aware that the contents of the UVC stream will change from MJPEG to
Skype transport. Configuring all supported streams with the XU controls transitions the interface from
legacy mode to the Skype transport stream mode. The device is NOT guaranteed to transition to Skype
transport stream mode until at least the main and preview stream IDs are configured using Skype
Extension Unit controls. Use of the audio configuration control does not affect the audio data from the
device. The data extrapolated from the audio configuration control only affects how the host (the Skype
SDK in most cases) performs audio post processing. The host is NOT required to use the data provided
by the audio control.

The host MUST support retrieving the H.264 payload stream on the main UVC video streaming interface.

The host MUST support the ability to:

 retrieve the preview stream from either a secondary UVC endpoint in raw format or in the Skype
Transport Stream format

 de-mux the preview stream from the main endpoint when the preview stream is sent along with the
main stream in single endpoint mode

Copyright © 2012 Skype. All Rights Reserved. Page 11

3 Skype Transport Stream

The Skype transport stream is defined to provide timing information and multiplexing for a variety of
encapsulated payload streams.

Illustration 1: Skype Transport Stream

The Skype transport stream is itself encapsulated as a UVC payload format, as defined in the following
documents:

[2] USB_Video_Payload_Frame_Based_1.1
[3] USB_Video_Payload_Stream_Based_1.1
[4] USB_Video_Payload_MJPEG_1.1

Each Skype transport stream packet described in this section is a UVC frame as defined in [2],[3] and [4]
and as such the total length of the packet is informed by the underlying UVC framing. The device MUST
advertise a maximum frame rate large enough to support all possible payload frames without
fragmentation.

3.1 Skype Transport Stream Packet Format

In this section all reference to individual values and fields are understood to be in big-endian format.
The terms 'start', beginning' and 'earlier' refer to bits with smaller address values. For example,
beginning refers to byte 0 which appears first on the USB wire. In illustrations, the smaller bit address
values are on the left, and increase from left to right.

A Skype transport stream packet consists of three sections which are always found in the following
order:

 A data section of arbitrary length containing the payload data of the encapsulated stream(s), with
optional undefined padding between payloads.

 A header section containing
o An arbitrary number of 160 bit stream headers (denoted as HDR0 … HDRn-1 in the diagram)
o 32 bit value “N” denoting the number of stream headers

Page 12 Copyright © 2012 Skype. All Rights Reserved.

o 32 bit constant magic number 0x534B5950 (SKYP)

 An optional undefined trailing bytes section, guaranteed to not contain the magic number.

Illustration 2: Skype Transport Stream Packet

The host WILL NOT attempt to interpret data in the areas denoted as “undefined”. This allows the
device to optionally align payloads and headers or conform to additional external bit stream
specifications. The host MUST NOT rely on any specific alignment, padding or private data; the host
MAY, however, detect the presence of such to enable processing using more optimal methods.

3.1.1 Stream Header Format

The stream header defines the location, type and timing attributes of a single payload frame within a
Skype transport stream packet. Stream headers are only found in the header section of the Skype
transport stream packet.

The stream header has the following format:

Offset Name Bits Description

0 PTS 64 Based on 90 kHz clock

64 StreamID 8 Identifier distinguishing between multiple
streams

72 StreamType 8 Denote the type of the payload stream

80 Continuity/Sequence 16 Allows the host to detect lost payloads

96 PayloadOffset 32 Delimits the beginning of a payload

128 PayloadSize 32 Delimits the length of a payload

Table 3.1: Skype XU Payload Header Format

Copyright © 2012 Skype. All Rights Reserved. Page 13

Fields in the stream header have the following meaning:

PTS – The Presentation Time Stamp MUST be derived from the video capture clock and is measured in
90 kHz ticks.

StreamID – Identifier denoting which stream a given payload being referenced belongs to.

 0 – Refers to the main capture stream.

 1 – Refers to the preview capture stream.

 2-127 – Refer to video payloads that are not explicitly the capture or the preview stream.

 128-255 – Refer to streams which are reserved for vendor use. The host should not interpret
contents.

Note that if operating in dual endpoint mode and the preview interface is using the Skype transport
stream packet format, the StreamIDs returned by the main and preview video endpoints in the same
UVC frame MUST be mutually exclusive.

In the dual endpoint case if both interfaces use the Skype transport stream format, then the full range of
supported stream IDs MAY appear on either interface.

StreamType – Identifies the format of the payload being referenced.

 0 – YUY2 (see Video References)

 1 – NV12 (see see Video References)

 2 – MJPEG (see see Video References)

 3– H.264 (see see Video References)

 4-127 – Reserved by Skype for future use.

 128-255 – Vendor specific types. The host should not interpret contents.

Continuity/Sequence – An unsigned counter used by the host to detect lost frames, this MUST
increment for every new payload belonging to the given StreamID. The counter will wrap back to zero
after reaching its maximum representable value.

PayloadOffset – The beginning of the payload as the number of bytes from the start of the data section.

PayloadSize – The length of the payload in bytes.

Page 14 Copyright © 2012 Skype. All Rights Reserved.

3.1.2 YUY2 Payload Format

When utilizing the Skype transport stream packet format (section 3.1), a YUY2 payload (StreamType 0)
consists of a 32 bit header comprised of the YUY2 frame's width (16 bits), followed by the YUY2 frame's
height (16 bits) , followed by one frame of YUY2 data. Width is constrained to be an even number.

 This yields a required PayloadSize of 2 + 2 + 2*(Width*Height) bytes. The YUY2 frame data format
follows:

Illustration 3: YUY2 Payload Format

3.1.3 NV12 Payload Format

When utilizing the Skype transport stream packet format (section 3.1), an NV12 payload (StreamType 0)
consists of a 32 bit header comprised of the NV12 frame's width (16 bits), followed by the NV12 frame's
height (16 bits) , followed by one frame of NV12 data. Width and height are constrained to be even
numbers.

 This gives a required PayloadSize of 2 + 2 + 3*(Width*Height)/2 bytes. The NV12 frame data format
follows:

Illustration 4: NV12 Payload Format

Copyright © 2012 Skype. All Rights Reserved. Page 15

3.1.4 MJPEG Payload Format

For a Skype transport stream packet sending a MJPEG payload (StreamType 2) the payload consists of an
entire frame of motion jpeg data. The PayloadSize is variable. The MJPEG frame data format is as
follows:

3.1.5 H.264 Payload Format

In both the single and dual endpoint cases, sending H.264 payloads (StreamType 3) requires use of the
Skype Transport Stream Packet Format (section 3.1). For example, to configure the preview stream as
H.264 using dual endpoints, the preview stream MUST send the H.264 payload within the Skype
transport stream packet container. An H.264 payload MAY consist of multiple NAL units or a single NAL
unit. If an H.264 payload consists of multiple NAL units, all NAL units are considered a single payload.
This means all NAL units in a single frame have one header. The PayloadSize is considered the
cumulative sum of the lengths of each individual NAL unit. If there are multiple NAL units in a single
payload, each individual NAL unit should NOT have multiple headers. See the examples below:

Example of proper H.264 payload within a Skype UVC XU frame containing multiple NAL units:

Illustration 6: Correct UVC Frame with One Header

Illustration 5: MJPEG Payload Format

Page 16 Copyright © 2012 Skype. All Rights Reserved.

Example of an incorrect H.264 payload within a Skype UVC XU frame containing multiple NAL units:

All H.264 streams are assumed to use the constrained baseline profile. Explicitly setting the H.264
stream to any other profile is out of the scope of this XU.

3.2 Skype Transport Stream Decoding Process

The host will decode each Skype transport stream packet by executing the following algorithm:

1. Start at the end of the Skype transport stream packet and scan backwards until the magic number is
found. The magic number delimits the end of the header section and the beginning of the optional
trailing bytes section. If the magic number is not found, no further processing is performed and the
packet is discarded.

2. Read the 32-bit value “N” immediately preceding the magic number. “N” is the number of headers
present in the header section, which implicitly determines the end of the data section and the
beginning of the header section. If “N” defines a header section length such that it does not fit
within the Skype transport stream packet, no further processing is performed and the packet is
discarded.

3. For each header in the header section, starting from the beginning:
a. Read the PayloadOffset and PayloadSize, denoting the byte offset and byte length

respectively within the data section. If the payload delimited by PayloadOffset and
PayloadSize does not completely reside within the data section of the packet, no further
processing is performed and the packet is discarded.

b. The delimited payload data, along with the remaining header information is given to the
[next level] for processing.

Illustration 7: Incorrect UVC Frame with Multiple Headers

Copyright © 2012 Skype. All Rights Reserved. Page 17

Any implementation of this algorithm is valid; provided that error conditions leading to the packet being
discarded, and the order of header processing is maintained.

Note: The order in which payloads are processed is determined by the order of the headers in the header
section. This may not necessarily correspond to the order that the payloads are laid out in the data
section.

Note: A Skype transport stream packet can vary widely in complexity; it MAY contain multiple
payloads per stream for multiple payload streams, or it MAY contain a single payload from a
single stream. Host implementations should take care to ensure that they are able to handle all
streams, as no logical upper limit on packet size or number of payloads is defined. The number
of payloads defined is physically limited by the bit size of the StreamID field inasmuch as this
field is 8 bits and can only support 256 different stream IDs.

4 Skype UVC XU Descriptor

To detect the presence of a camera supporting the Skype XU, the camera MUST advertise the following
XU Descriptor:

Name Value Hex
 Value

Size Description

bLength 29 0x1D 1 Length of the descriptor itself.

bDescriptorType 36 0x24 1 CS_INTERFACE – Identifies this descriptor
as a class specific interface.

bDescriptorSubtype 6 0x06 1 VC_EXTENSION_UNIT – Identifies the
subtype of this descriptor as an extension
unit.

bUnitID 7 0x07 1 Unique identifier to reference the
extension unit when sending and receiving
XU control data.

guidExtensionCode BD5321B4-D635
-CA45-B203-4E0
149B301BC

N/A 16 Globally unique identifier of the extension
unit in the context of the UVC driver. This
field guarantees the device supports the
Skype XU. This value is also sent to the UVC
driver to add the XU and its associated
controls the UVC driver.

Note that some platforms require byte
swapping of various fields when sending
the GUID to the UVC driver. Care should be
taken to ensure the proper byte format for
the target platform.

bNumControls 32 0x20 1 Number of controls allocated to the XU.

Page 18 Copyright © 2012 Skype. All Rights Reserved.

Name Value Hex
 Value

Size Description

bNrInPins 1 0x01 1 Number of input pins of this Unit.

baSourceID(0) 3 0x03 1 ID of the Terminal or Unit connected to the
first input pin. There is one entry in this
array for each input pin specified by
bNrInPins.

bmControlSize 4 0x04 1 Size of the active controls bitmap specified
by the bmControls array.

bmControls(0) 0xBF 0xBF 1 Bitmap specifying which controls are
active. The position of each bit correlates
to an XU control selector.

bmControls(1) 0x3F 0x3F 1 Bitmap specifying which controls are
active. The position of each bit correlates
to an XU control selector.

bmControls(2) 0x80 0x80 1 Bitmap specifying which controls are
active. The position of each bit correlates
to an XU control selector.

bmControls(3) 0x03 0x03 1 Bitmap specifying which controls are
active. The position of each bit correlates
to an XU control selector.

iExtension 0 0x00 1 Index of a string descriptor that describes
this extension unit.

Copyright © 2012 Skype. All Rights Reserved. Page 19

5 Skype UVC XU Controls

The controls and parameters described in this section will be in little-endian format, in keeping with USB
conventions. The XU controls provide a common interface not available in the standardized UVC driver
allowing for specialized camera interfacing specific to using the Skype application. All XU control
requests are initiated on the first interface whether that interface is the preview or main stream.

Name
Select

o
r

Description

Version 1 Specification version the device is conforming to

LastError 2 Holds the most recent error

FirmwareDays 3 Firmware build date, as days since the millennium

StreamID 4 Control selecting the stream to configure/control

EndpointSetting 5 Control distinguishing between the main and preview
streams when operating in dual endpoint mode.

AudioConfiguration 6 Returns the microphone spacing and audio processing
characteristics of the device.

 7 Reserved for future Global Class Controls

StreamFormatProbe 8 Query Supported Stream Formats

StreamFormatCommit 9 Set Supported Stream Formats

StreamFormatProbeType 10 Query minimum and maximum supported stream types

StreamFormatProbeWidth 11 Query minimum and maximum supported frame width
based on the last queried bStreamType.

StreamFormatProbeHeight 12 Query maximum and minimum supported frame height
based on the last queried bStreamType

StreamFormatProbeFrameInterval 13 Query maximum and minimum supported frame
intervals based on the last queried value of
bStreamType

StreamFormatProbeBitrate 14 Query maximum and minimum supported bit rates
based on the last queried value of bStreamType

Page 20 Copyright © 2012 Skype. All Rights Reserved.

Name
Select

o
r

Description

 15-17 Reserved for future Stream Dependent Configuration
Controls

 18-23 Reserved for future Stream Type Dependent
Configuration Controls

BitrateControl 24 Adjust Bitrates Dynamically

FrameIntervalControl 25 Adjust Frame Intervals Dynamically

GenerateKeyFrameControl 26 Force Key Frames Dynamically

 27-31 Reserved for future dynamic controls

 32-X Vendor may specify private controls in this range

Copyright © 2012 Skype. All Rights Reserved. Page 21

5.1 Global Class Controls

Controls in this class reflect status which is of a device wide nature, or settings which change device
wide state and behavior. In addition to the mandatory requests, all controls MUST conform to the

requirements for XU controls from the standard UVC specification.

5.1.1 Version Control

This control queries the specification version implemented by the device.

Control Selector Version

Mandatory Requests GET_CUR, GET_INFO

wLength 1

Offset Field Size Value Description

0 bVersion 1 Number The version of this specification being
implemented

0x21: Version 2.1

Calling this control will always set current error returned by LastError (section 5.1.3) to '0'.

5.1.2 Firmware Days Control

This control queries the number of days since Jan 1, 2000 until the release of the firmware.

Control Selector FirmwareDays

Mandatory Requests GET_CUR, GET_INFO

wLength 2

Offset Field Size Value Description

0 wFirmwareDays 2 Number The firmware build date, as the number of days
since January 1, 2000.

Calling this control will always set current error returned by LastError (section 5.1.3) to '0'.

Page 22 Copyright © 2012 Skype. All Rights Reserved.

5.1.3 Last Error Control

This control queries the most recent error detected when setting XU controls.

Control Selector LastError

Mandatory Requests GET_CUR, GET_INFO

wLength 1

Offset Field Size Value Description

0 bLastError 1 Number Numeric code indicating the error condition.

0 – NoError
1 – NotAllowed
2 – InvalidArgument
3 – NotSupported

Calling this control will always set current error returned by LastError (section 5.1.3) to '0'. This means,
calling the LastError control effectively returns the last detected error and resets the last detected error.
Calling this control two or more times consecutively will always return '0'.

In the event a control sets multiple errors, only one error code is returned. The error codes are ordered
by priority. NotAllowed ('1') is the highest priority error. The error priority decreases as the error
number increases.

5.1.4 StreamID Control

This control queries supported the stream IDs of the device and sets the current stream ID for all stream
specific controls. The stream identifier is used by all subsequent controls to indirectly control multiple
streams. The GET_MIN request MUST always return zero, the GET_MAX request MUST return the
maximum video stream id supported. The SET_CUR request sets bStreamID to the desired stream.
bStreamID indicates which stream all XU stream specific controls are manipulating.

Control Selector StreamID

Mandatory Requests GET_MIN, GET_MAX, SET_CUR

wLength 1

Offset Field Size Value Description

0 bStreamID 1 Number StreamID being configured/controlled.

Copyright © 2012 Skype. All Rights Reserved. Page 23

The StreamID control is global for both endpoints. Note that in dual endpoint mode using GET_MAX
returns the maximum supported StreamID between both endpoints. If the control returns a GET_MAX
value higher than 1 (preview stream) and the preview stream does NOT support the Skype transport
stream it (i.e. it only operates in legacy mode), then it is implied StreamID 1 is not included in the range
reported by this control.

Calling SET_CUR on this control with an unsupported stream ID will set the current error returned by
LastError (section 5.1.3) to InvalidArgument ('2').

5.1.5 EndpointSetting Control

The EndpointSetting control informs the host software of the endpoint configuration of the video
streaming device. If there is only one endpoint, the control returns the value 0. If there are two
endpoints, either the main endpoint or the preview endpoint will be first in the endpoint enumeration.
If the main endpoint is first, the control returns 1. If the preview endpoint is first, the control returns 2.
Note, in either configuration the first endpoint is ALWAYS the video control interface to which all XU
commands are issued.

Control Selector InterfaceType

Mandatory Requests GET_CUR, GET_INFO

wLength 1

Offset Field Size Value Description

0 bInterfaceType 1 Number Numeric code enumerating the configuration of the
video interfaces.

0 – Single Endpoint
1 – Dual Endpoint, main first and preview second
2 – Dual Endpoint, preview first and main second

Calling this control will always set current error returned by LastError (section 5.1.3) to '0'.

5.1.6 AudioConfiguration Control

The AudioConfiguration control informs the host software of the microphone spacing characteristics,
level of audio pre-processing, gain range in decibels, number of supported gain range steps and the
recommended default gain step value of the device for a conference call. This control returns a
structure containing data that communicates the number of microphones, level of pre-processing,
microphone spacing values measured in millimeters, flag values for the presence of voice activity and
noise suppression availability, gain range in decibels, number of gain range steps and the recommended
default gain step value to start a video call. Only the GET_CUR requested is supported.

Page 24 Copyright © 2012 Skype. All Rights Reserved.

With respect to microphone spacing, if a device uses three microphones, it is assumed these
microphones are configured with one middle microphone and then two evenly spaced flanking
microphones. The microphone processing field of the structure is defined as the following enumeration:

 0 – Beam-forming performed internally (implies one channel or endpoint)

 1 – Four microphones down-mixed (implies two channels or endpoints)

 2 – Three microphones down-mixed (implies two channels or endpoints)

 3 – Four microphones pass through (implies four channels or endpoints)

 4 – Three microphones pass through (implies three channels or endpoints)

 5 – Two microphones pass through (implies two channels or endpoints)

If the device performs internal beam-forming then both microphone spacing values are returned as -1.
If the device does not perform internal beam-forming and uses two microphones, the first value in the
returned structure is the spacing in millimeters between the two microphones (by default considered
the outer microphones) and the second value is -1. If the device does not perform internal beam-
forming and uses three microphones, the first value in the in the returned structure is the spacing in
millimeters between the two outer flanking microphones as the third microphone is assumed to be
centered. If the device does not perform internal beam-forming and uses four microphones, the first
value in the returned structure is the spacing in millimeters between the outer microphones and the
second value is the spacing in millimeters between the inner microphones. The inner microphones are
assumed to be evenly spaced with respect to the outer microhpones.

The flag register contains flags indicating if the device’s audio processing includes voice activity and
noise suppression. A ‘1’ in the corresponding bit indicates the feature is present in the device and a ‘0’
indicates the feature is not present in the device. The flag register is laid out as depicted below:

Gain range is returned as an integer. The number of gain steps value is also returned as an integer.
Each gain step MUST be an equal amount of decibels. The host will determine the decibel amount of
each step by dividing the gain range into an equal number of slices based on the number of steps. The
number of gain steps value MUST NOT include 0. For example, if the gain range is 30 and each step is 2
decibels, then the number of gain step should be 15, NOT 16. A step of zero will indicate zero decibels.

The recommended default step value is returned as an integer. This value indicates the device’s
recommended default gain step to begin a video call.

Control Selector InterfaceType

Mandatory Requests GET_CUR, GET_INFO

wLength 12

Offset Field Size Value Description

Copyright © 2012 Skype. All Rights Reserved. Page 25

0 wMicConfiguration 2 Number Numeric code enumerating the microphone
configuration and indicating the level of audio pre-
processing:

0 – Beam-formed
1 – Four mics down-mixed
2 – Three mics down-mixed
3 – Four mics pass through
4 – Three mics pass though
5 – Two mics pass through

2 wOuterSpacing 2 Number Spacing in millimeters between the outer
microphones.

-1 – Indicates beam-forming is performed
internally.

4 wInnerSpacing 2 Number Spacing in millimeters between the inner
microphones.

-1 – Indicates the device only has two or three
microphones. Note, when wOuterSpacing is
returned as -1, then wInnerSpacing has no meaning
and MUST be -1.

6 wGainRangeDB 2 Number The maximum gain range of the device’s
microphones in decibels. This value represents the
highest possible decibel gain possible from the
microphone array.

This value MUST not be less than zero.

8 bStepCount 1 Number Number of evenly spaced gain steps supported by
the device.

This value MUST not be less than zero.

This value MUST not include zero.

9 bDefaultStep 1 Number The recommended default gain step value for
making a video call.

This value MUST not be less than zero.

10 wFeatureSet 2 Flag
Register

Available audio features of the device. ‘1’ indicates
feature is available and ‘0’ indicates the feature is
not available.

Bit 0 – Voice Activity
Bit 1 – Noise Suppresion
Bits 2 – 15 – Unused

Page 26 Copyright © 2012 Skype. All Rights Reserved.

The device MUST respond to this control any time it is requested, even if streaming is currently active.
Calling this control will always set the current error returned by LastError (section 5.1.3) to '0'.

Copyright © 2012 Skype. All Rights Reserved. Page 27

Stream Dependent Configuration Class Controls

Controls in this class are dependent on the current value of bStreamID (set by the StreamID control) to
decide which payload stream they are configuring.

5.1.7 Stream Format Probe and Commit Controls

These controls have an identical layout.

The device SHOULD return GET_MIN and GET_MAX values such that for all supported configurations,
each field value is within the range returned. These controls operate on the current stream set by
bStreamID from the StreamID control.

If using a legacy system, it is possible using the StreamFormatProbe command with GET_MIN and
GET_MAX will not operate correctly. In the event this occurs, the controls in sections 5.2.2 through
5.2.6 can be utilized for probing the maximum and minimum supported values for each stream type on
field at a time.

Control Selector StreamFormatProbe & StreamFormatCommit

Mandatory Requests GET_CUR, GET_MAX, GET_MIN, SET_CUR

wLength 13

Offset Field Size Value Description

0 bStreamType 1 Number As per StreamFormat listing.

1 wWidth 2 Number Frame width in pixels.

3 wHeight 2 Number Frame height in pixels.

5 dwFrameInterval 4 Number Frame interval in 100 ns units

9 dwBitrate 4 Number Bitrates in bits per second

If the values submitted to the StreamFormatProbe control are not supported or the stream ID specified
by bStreamID is not supported, the error returned by LastError (section 5.1.3) is set to NotSupported.

If the values submitted to the StreamFormatCommit control are not supported by the device or the
stream ID specified by bStreamID is not supported, the error returned by LastError (section 5.1.3) is set
to NotAllowed.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

5.1.8 StreamFormatProbeType Control

This control is intended to allow support for legacy system drivers that cannot support returning
minimum and maximum values for complex data sets. The intended use of this control is to discover the
maximum and minimum support stream types as defined in section 3.1.1.

Page 28 Copyright © 2012 Skype. All Rights Reserved.

This control is used in concert with remaining singleton stream format probe controls. Using this control
with SET_CUR, sets the stream type that applies to the remaining probe controls. For example, sending
stream type 3 (H.264) with SET_CUR and then calling the width and height probe controls with
GET_MAX will return the maximum supported width and height for the steam type of 3 (H.264).

Control Selector StreamFormatProbeType

Mandatory Requests GET_MAX, GET_MIN, SET_CUR, GET_CUR

wLength 1

Offset Field Size Value Description

0 bStreamType 1 Number As per StreamFormat listing.

If the values submitted to the StreamFormatProbeType control are not supported or the stream ID
specified by bStreamID is not supported, the error returned by LastError (section 5.1.3) is set to
NotSupported.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

Note, that mixing and matching values obtained using GET_MIN/MAX for stream type settings are NOT
guaranteed to result in a valid configuration. The intent of obtaining maximum and minimum values is
to give the host a sense of the capability range of the camera.

5.1.9 StreamFormatProbeWidth Control

This control is intended to allow support for legacy system drivers that cannot support returning
minimum and maximum values for complex data sets. The intended use of this control is to discover the
maximum and minimum supported width per stream type.

This control is used in concert with StreamFormatProbeType control. Whichever stream type is set first
with the SteamFormatProbeType control determines which stream type the returned width applies to.

Control Selector StreamFormatProbeWidth

Mandatory Requests GET_MAX, GET_MIN

wLength 1

Offset Field Size Value Description

0 wWdith 2 Number Frame width in pixels.

This control is a read only function and there are no anticipated error conditions generated by the
function.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

Copyright © 2012 Skype. All Rights Reserved. Page 29

5.1.10 StreamFormatProbeHeight Control

This control is intended to allow support for legacy system drivers that cannot support returning
minimum and maximum values for complex data sets. The intended use of this control is to discover the
maximum and minimum supported height per stream type.

This control is used in concert with StreamFormatProbeType control. Whichever stream type is set first
with the SteamFormatProbeType control determines which stream type the returned height applies to.

Control Selector StreamFormatProbeHeight

Mandatory Requests GET_MAX, GET_MIN

wLength 1

Offset Field Size Value Description

0 wHeight 2 Number Frame height in pixels.

This control is a read only function and there are no anticipated error conditions generated by the
function.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

5.1.11 StreamFormatProbeFrameInterval

This control is intended to allow support for legacy system drivers that cannot support returning
minimum and maximum values for complex data sets. The intended use of this control is to discover the
maximum and minimum supported frame interval per stream type. Note, the returned min/max frame
interval is related to the min/max resolution (width and height) respectively.

This control is used in concert with StreamFormatProbeType control. Whichever stream type is set first
with the SteamFormatProbeType control determines which stream type the returned frame interval
applies to.

Control Selector StreamFormatProbeFrameInterval

Mandatory Requests GET_MAX, GET_MIN

wLength 1

Offset Field Size Value Description

0 dwFrameInterval 4 Number Frame interval in 100 ns units.

This control is a read only function and there are no anticipated error conditions generated by the
function.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

Page 30 Copyright © 2012 Skype. All Rights Reserved.

5.1.12 StreamFormatProbeBitrate

This control is intended to allow support for legacy system drivers that cannot support returning
minimum and maximum values for complex data sets. The intended use of this control is to discover the
maximum and minimum supported bit rate per stream type. Note, the returned min/max bitrate is
related to the min/max resolution (width and height) respectively.

This control is used in concert with StreamFormatProbeType control. Whichever stream type is set first
with the SteamFormatProbeType control determines which stream type the returned bit rate applies to.

Control Selector StreamFormatProbeBitrate

Mandatory Requests GET_MAX, GET_MIN

wLength 1

Offset Field Size Value Description

0 dwBitrate 4 Number Bit rate in bits per second.

This control is a read only function and there are no anticipated error conditions generated by the
function.

Upon success, the value returned by the LastError control (section 5.1.3) is set to NoError.

Copyright © 2012 Skype. All Rights Reserved. Page 31

Stream Dependent Dynamic Class Controls

Controls in this class are dependent on the current value of bStreamID (set by the StreamID control) to
decide which payload stream they are configuring. Controls in this class are REQUIRED to work while
the device is actively streaming data. The payload stream format MUST already be negotiated prior to
setting these controls.

5.1.13 Dynamic BitrateControl Control

The BitrateControl Control sets the desired bitrate of the active stream (designated by bStreamID set by
the StreamID control).

Control Selector BitrateControl

Mandatory Requests SET_CUR

wLength 4

Offset Field Size Value Description

0 dwBitrate 4 Number The bitrates in bits per second.

The behavior of the value returned by the LastError control (section 5.1.3) based on the input value,
dwBitrate, is as follows:

 dwBitrate is out of range of the camera's physical capabilities: NotSupported.

 dwBitrate is within a valid range; however, the camera is unable to change to the requested bit rate
for any other reason: NotAllowed.

 Success: NoError.

Page 32 Copyright © 2012 Skype. All Rights Reserved.

5.1.14 Dynamic FrameIntervalControl Control

The FrameIntervalControl Control determines the time interval in 100 nanosecond chunks of the active
stream (designated by bStreamID set by the StreamID control).

Control Selector FrameIntervalControl

Mandatory Requests SET_CUR

wLength 4

Offset Field Size Value Description

0 dwFrameInterval 4 Number The frame interval in 100 ns units.

The behavior of the value returned by the LastError control (section 5.1.3) based on the input value,
dwFrameInterval is as follows:

 If dwFrameInterval is set to a value the camera cannot or will not support: NotAllowed.

 Success: NoError.

5.1.15 GenerateKeyFrame Control

The GenerateKeyFrame control forces the device to generate a key frame or IDR frame for the active
stream (designated by bStreamID set by the StreamID control). The device MUST generate a key frame
when this control is sent with a value of '1'. The host should send this command one time for each
forced key frame desired. Calling the control with any other input value has no effect.

Control Selector GenerateKeyFrameControl

Mandatory Requests SET_CUR

wLength 1

Offset Field Size Value Description

0 bGenerateKeyFrame 1 Number Request the device to generate a Key Frame:

1 - Generate key frame

If bGenerateKeyFrame is set to any value other than '1', the value returned by the LastError control
(section 5.1.3) is set to InvalidArgument.

If the device is unable to generate a key frame for any reason, the value returned by the LastError
control (section 5.1.3) is set to NotAllowed.

Otherwise, the value is set to NoError.

Copyright © 2012 Skype. All Rights Reserved. Page 33

6 Video Operational Model

The device will be configured according to the following model and assumes the intent is to use the
Skype XU:

Legacy Mode

1. Using standard UVC controls, the host probes for video devices supporting the Skype XU by looking
for the XU Descriptor GUID or attempting to use any of the XU controls on the desired video
interface with a successful result.

2. Host selects an available device based on a host specific priority scheme.
3. Host will operate the device in a UVC compliant manner
4. Global class controls MAY be queried by the host in preparation for transitioning to Skype transport

stream mode (e.g. Query version control, read FirmwareDays/VID/PID to lookup known bugs/quirks)

Stream Format Configuration(s)

1. Host adds the XU to the UVC driver
2. If a device with two video endpoints is chosen, the host calls the EndpointSetting control to

determine which endpoint corresponds to the main capture stream and which endpoint
corresponds to the preview stream

3. Host ensures the main endpoint is configured as MJPEG with a minimum 720p resolution
(1280x720)

4. Host calls the StreamID control to determine the range of supported stream IDs
5. Host MAY now use Stream Dependent Configuration Class Controls
6. Host sets the StreamID control to the desired stream to run a probe/commit phase with.
7. Host goes through a stream configuration probe & commit phase for all possible StreamIDs
8. The stream format is now considered set for each StreamID.

Dynamic Configuration

1. Host MAY now set StreamID dynamically to any StreamID configured in (Stage 2.)
2. Host MAY now use Stream Dependent Dynamic Class controls to adjust parameter or generate key

frames during streaming

Stream Format Configuration (Stage 2.) will occur for each payload stream supported by the device. The
host will configure StreamIDs incrementally starting from StreamID zero.

Note that in dual endpoint mode, the preview stream MAY not use the Skype transport stream format.
If the preview stream is separate and does not advertise MJPEG then it is assumed to operate in legacy
mode. If the preview stream is separate and advertises MJPEG, the StreamID control MUST be used to
determine if the preview stream supports the Skype transport stream format. If setting the StreamID
control bStreamID to 1 causes an error (checked with the LastError control) then the preview stream
will only operate in legacy mode. Note that operating the preview endpoint (in dual endpoint mode) in
Skype transport mode will generally not occur. Situations (in dual endpoint mode) where the preview

Page 34 Copyright © 2012 Skype. All Rights Reserved.

endpoint send multiple streams via the Skype transport format are not likely to occur and will normally
be supported by vendor specific host software. Skype generally utilizes only a YUY2 preview stream and
H.264 main stream.

Copyright © 2012 Skype. All Rights Reserved. Page 35

The following functional stages are also illustrated below:

 Device is ready to begin legacy streaming during (Stage 1.)

 Device is ready to begin Skype transport streaming at any point after (Stage 2.) Note that each
endpoint MUST be configured using the StreamFormatCommit control before it will send a Skype
transport stream packet frame. If the commit control is not used on a streamID, that StreamID will
not appear in the packet. For example, if StreamID 0 is NOT configured using the
StreamFormatCommit, the main endpoint will send standard video data in its default format instead
of a Skype transport stream packet. If at least the preview and main streams are NOT configured,
the device MAY not transition to Skype transport mode.

 Device can perform dynamic configuration before/during/after streaming (Stage 3.)

Illustration 8: Operational State Transitions

Page 36 Copyright © 2012 Skype. All Rights Reserved.

Copyright © 2012 Skype. All Rights Reserved. Page 37

6.1 Probe and Commit Phases

Many controls come in pairs with suffixes Probe and Commit (e.g. StreamFormatProbe/Commit). The
probe controls are used by the host to query the device for a supported configuration and the commit
controls are used to activate a supported configuration.

This works as follows:

1. The host sets the desired stream to configure by using the StreamID control with the SET_CUR
command.

2. The host performs a SET_CUR on the probe control with the configuration values it wants to query
for device support.

3. The device may not exactly support the configuration values. If the exact values are not supported
the device sets the current value of the probe control to the closest value supported by the device.
The device always supports at least one configuration, so a value is always available. If the device
supports the configuration value exactly, it sets the current value of the probe control to the
unmodified configuration value.

4. The host performs a GET_CUR on the probe control to get the device modified value.
5. The host MAY choose to accept the modified value, or it MAY continue querying the device (that is,

Jump to step 1.)
6. The host performs a SET_CUR on the commit control with one of the values it retrieved in step 4.

The device now considers this configuration to be active for the purpose of streaming.

Any value returned from a probe control by a GET_CUR request MUST be settable to the corresponding
commit control without error. The result of setting a commit control to a value not returned from a
probe control GET_CUR request is defined in the control description.

If using a legacy system that requires the single value stream probe controls to find the maximum and
minimum values of the stream information, the host must first call StreamFormatProbeType with
GET_MIN and GET_MAX. Then the host must iterate through the individual probe controls calling
GET_MIN/MAX to obtain the minimum and maximum supported values for that stream. Each iteration,
the host must call StreamFormatProbeType with SET_CUR and the call each of the remaining
StreamFormatProbe* controls (Width, Height, FrameInterval and Bitrate). The values returned by the
other probe controls are dependent on the value set by the StreamFormatProbeType control.

Page 38 Copyright © 2012 Skype. All Rights Reserved.

The following diagram illustrates a typical probe and commit scenario:

It is the responsibility of the device to ensure that all values returned from GET_MIN and GET_MAX calls
are supported.

Illustration 9: Probe and Commit

Control Flow Example

Copyright © 2012 Skype. All Rights Reserved. Page 39

7 Video Examples

Example 1 – Configure a single endpoint as the main capture stream using H.264 video and use the
preview endpoint in legacy mode:

This example assumes the dual endpoint case; the main endpoint is already configured as MJPEG 720p
and starts assuming the desired endpoints are already known.

1. Add the XU to the UVC driver.
2. Call the Version control to ensure the correct XU version.
3. Call the EndpointSetting control to determine the main and preview endpoint configuration.
4. Call the StreamID control with GET_MAX and GET_MIN to discover how many payloads each frame

MAY contain. In this example, GET_MIN and GET_MAX return 0 (the main Stream ID). Activate the
main stream to probe and commit by setting bStreamID to 0 with the SET_CUR command of the
StreamID control.

5. Call the StreamFormatProbe control using SET_CUR with the desired configuration.
6. Call the StreamFormatProbe control with GET_CUR to check the closest match found by the device.
7. Repeat 5 and 6 until a suitable configuration is discovered.
8. Call the StreamFormatCommit control using SET_CUR with the discovered settings.
9. Use standard UVC discovery and commit methods to configure the preview stream.
10. Initiate video streaming on the main interface and the preview interface using standard UVC

methods.
11. Process the raw video frames from the preview interface using standard methods.
12. Parse UVC frame buffer from the main interface formatted as seen below:

Illustration 10: UVC Frame Containing Main Stream Only

Example 2 – Configures a single endpoint as the main and preview stream using H.264 main and YUY2

preview

This example assumes single endpoint mode with only the main and preview stream type supported. It
is also assumed the single endpoint is already known and configured as MJPEG at 720p resolution.

1. Add the XU to the UVC driver.
2. Call the Version control to ensure the correct XU version.

Page 40 Copyright © 2012 Skype. All Rights Reserved.

3. Call the StreamID control with GET_MAX and GET_MIN to discover how many payloads each frame
MAY contain. In this example, GET_MIN is 0 and GET_MAX is 1. Call the StreamID with SET_CUR for
each stream before doing the probe/commit sequence for that stream.

4. Call the StreamFormatProbe control using SET_CUR with the desired configuration for both
StreamID 0 and 1.

5. Call the StreamFormatProbe control with GET_CUR to check the closest match found by the device
for both StreamID 0 and 1.

6. Repeat 4 and 5 until a suitable configuration is discovered.
7. Call the StreamFormatCommit control using SET_CUR with the discovered settings for both

StreamID 0 and 1.
8. Initiate video streaming using standard UVC methods.
9. Parse UVC frame buffer formatted as seen below:

Illustration 11: UVC Frame Containing Main and Capture Streams

8 Audio Operational Model

At any time during operation of the device, the MicrophoneConfiguration control can be called with
GET_CUR to probe the configuration of the device. This data can then be used by the host to provide
higher quality audio.

9 Video References

YUY2 and NV12 Formats:

 http://www.fourcc.org

MJPEG:

 http://www.usb.org/developers/devclass_docs/USB_Video_Class_1_1.zip

H.264:

 http://www.itu.int/rec/T-REC-H.264

http://www.fourcc.org/
http://www.usb.org/developers/devclass_docs/USB_Video_Class_1_1.zip
http://www.itu.int/rec/T-REC-H.264

