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Abstract

We propose the method of independent subspace analysis (ISA) for separating individual audio
sources from a single-channel mixture. ISA is based on independent component analysis (ICA)
but relaxes the constraint that requires at least as many mixture observation signals as sources. A
second extension to ICA is the use of dynamic components to represent non-stationary signals.
Sources are tracked by similarity of dynamic components over small time steps. We propose
a method for grouping components by partitioning a matrix of independent component cross-
entropies that we call amegram The ixegram measures the mutual similarities of components

in an audio segment and clustering the ixegram yields the source subspaces and time trajectories.
To demonstrate the techniques we give examples of ISA applied to separation of musical and
speech sources from single-channel mixtures.
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ABSTRACT

We propose the method of independent subspace anal-
ysis (ISA) for separating individual audio sources from
a single-channel mixture. ISA is based on indepen-
dent component analysis (ICA), a widely used method
for array signal processing and feature extraction, but
it extends ICA in several ways. The first extension
is a method to extract statistically independent sub-
spaces from the projection of a one-dimensional obser-
vation signal onto a manifold, such as the short-time
Fourier transform or a constant-Q spectrogram. The
projection relaxes the constraint of ICA-based separa-
tion systems that requires there to be at least as many
mixture observation signals as there are sources. A sec-
ond extension to ICA is the use of dynamic indepen-
dent components to represent non-stationary signals.
Sources are tracked by similarity of dynamic compo-
nents over small time steps. We propose a method for
grouping components by partitioning a matrix of in-
dependent component cross-entropies that we call an
izegram. The ixegram measures the mutual similari-
ties of components in an audio segment and cluster-
ing the ixegram yields the source subspaces and time
trajectories. To demonstrate the techniques we give
examples of ISA applied to separation of musical and
speech sources from single-channel mixtures.

INTRODUCTION

1.1 Auditory scene analysis

One goal of auditory scene analysis is to extract indi-
vidual audio sources from a mixture of sources. Ex-
ample scenarios are separating speech from interfering
background sounds and separating individual musical
instruments from a polyphonic ensemble, [1].

A number of computational methods for audi-
tory scene analysis have been proposed that use
combinations of signal descriptions, such as sinu-
soidal tracks, correlograms and wide-band noise mod-
els, to represent low-level audio elements, [2][3][4].

Once a signal has been decomposed into fundamen-
tal representations, further stages attempt to iden-
tify groups of related components that form audi-
tory streams. The stream formation algorithms use
perceptually-motivated heuristics, such as common on-
set of harmonically-related components and amplitude
or frequency co-modulation of components, [5][6][7].

Due to the parametric representation of signal el-
ements and the heuristic nature of psycho-acoustic
grouping rules, the task of designing robust systems for
automatic scene analysis is rather complicated. Con-
sequently, the performance of these systems has been
limited and difficult to measure in practice.

Recently, however, blind signal separation systems
have been proposed that use independent component
analysis for separating unknown sources from a mix-
ture. ICA techniques make no explicit assumptions
about the composition and grouping of signal compo-
nents but instead rely on the statistical properties of
the latent sources for their identification. These meth-
ods enable source separation without parameter fit-
ting and thus show much promise for robust automatic
scene analysis implementations.

1.2 ICA and BSS

The problem of identifying unknown sources in a mix-
ture is called blind signal separation (BSS) and has
found utility in many signal processing applications.
A number of methods have been proposed for solving
various forms of BSS, and among them is independent
component analysis, [8][9][10][11].

ICA assumes that the individual source components
in an unknown mixture have the property of mutual
statistical independence, and this property is exploited
in order to algorithmically identify the latent sources.
It has been shown that many of the proposed algo-
rithms for ICA share a common mathematical founda-
tion, this has been used to demonstrate the equivalence
of many ICA approaches, [12].

Recall that statistical independence for a vector ran-
dom variable is defined by the property that the joint



probability density function factors into the product of
the marginal densities such that,

N

Pu(@) = [] Pus (). (1)

i=1

The canonical BSS/ICA model expresses the obser-
vation signal as the product of a mixing matrix and
vector of statistically independent signals,

x = As, (2)

where A = [a;,...,a,] is a n X p invertible mix-
ing matrix with linearly independent columns, s =
[s1 82 ... 8,]T is a random vector with p statistically
independent source signals and x = [z1 z3 ... xn]T
is an n-dimensional observable random vector with
n > p.

The BSS problem is solved by finding an unmizing
matrix W = A~! using only the observed signals x and
assuming statistical independence of the sources s. A
is assumed full rank. W is chosen so that the output
signals u are as statistically independent as possible,

u=Wx=WaAs. (3)

One method of solving ICA is to derive an update
rule for W that minimizes the mutual information
between the output joint density function and the
marginal densities, [10]:

= u 710"(“) u
I(u) _/Pu( ) log <H£\;1 Pui(ui)> du. (4)

This approach can be reduced to a contrast func-
tion on the outputs, ®(u), for which cumulants up
to fourth order are maximized. The extremum of
this function corresponds to maximum contrast from
Gaussian in each component. Therefore, independent
component analysis yields a higher-order decorrela-
tion between components. Higher order decorrelation
is stronger than that of principal component analysis
(PCA) which produces decorrelation of distributions
up to second order. Decorrelation is equivalent to in-
dependence only in the case of complete characteriza-
tion of the distribution by second-order moments as in
the Gaussian case.

As stated above, an equivalence class of algorithms
is known that performs the factorization of a mixture
vector into a vector of statistically independent non-
Gaussian sources. In general, the latent signals are
identifiable up to a permutation and scaling, thus W is
indeterminate and uniqueness constraints on the ICA
solution must be applied.

1.3 ICA and auditory scene analysis

The ability to factor a signal into statistically indepen-
dent components makes ICA an attractive prospect for
computational auditory scene analysis. However, BSS
algorithms are based on assumptions that are not prac-
tical for auditory scene analysis systems. The most
limiting of these assumptions is that there must be at
least as many observable mixture signals as source sig-
nals and that the mixing matrix be full rank.

However, auditory scene analysis canonically as-
sumes that there are fewer sensors than sources and
typically reduces to a single sensor problem. Thus the
BSS assumption on the dimensionality of x does not
hold, so the BSS form of ICA is not adaptable to the
problem of single-channel extraction.

To use the separation properties of ICA for audi-
tory scene analysis we propose a non-BSS method that
extracts maximally contrasting features from a single
mixture. The features are invertible so good approxi-
mations to source signals can be estimated. Our pro-
posed method expresses single-channel auditory scene
analysis as independent subspace separation in a man-
ifold.

INDEPENDENT SUBSPACE
ANALYSIS

Figure 1: Decomposition of a spectrogram into sepa-
rate spectrogram subspaces. Two streams from a psycho-
acoustic noise-burst sequence are correctly separated by in-
dependent subspace analysis.

ISA extends ICA by identifying independent multi-
component source subspaces of an input vector. Hy-
varinen [13], discovered emergent complex cell prop-
erties for vision by independent subspace analysis on
images. ISA-related methods have also been explored
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Figure 2: (a) Constant-Q spectrogram of 1 bar from a
Beethoven string quartet. (b) 5 independent components
extracted from the string quartet. The upper components
are the spectral basis z;, and the lower components are
decimated temporal functions, y;.

by Lathauwer et al. [14], who proposed a subspace
version of ICA, and Cardoso [15], who proposed multi-
dimensional ICA (MICA) for subspace identification.
Both of these works investigated the application of ISA
techniques to the analysis of fetal ECG recordings.

In these studies, the source signals are multi-
dimensional since they are observed by N > 1 sensors.
However, in contrast to the one-dimensional sources
in Equation 3, the ISA/MICA approach assumes that
each estimated source component is an n-tuple com-
posed of k > 1 signals, therefore a mixture signal is
decomposed into multi-dimensional source signals.

In the domain of sound, independent component
analysis has been used for decomposition of natural
sounds into independent controllable features, [16].
The method operates on a single-channel input sig-
nal that is projected onto a frequency basis using the
short-time Fourier transform. The extracted compo-
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Figure 3: Short-time Fourier transform spectrogram sub-
spaces and recovered signals for (a) extracted accompani-
ment chords composed of violin-1I, viola and ’cello. (b)
extracted violin-I melody note with vibrato.

nents are invertible and the resynthesis of a sound is
therefore controllable along independent subspace di-
mensions due to the independence of the features. The
current work extends this previous work by decompos-
ing a spectrogram into independent source subspaces
and inverting them to yield source separation.

2.1 Spectrogram subspace separation

Figure 1 shows spectrogram subspace separation of a
noise-burst sequence, used for psycho-acoustic experi-
ments, into the correct individual perceptual streams,
[1]. Figures 2 and 3 show decomposition of one bar
from a Beethoven string quartet into separate sub-
spaces using independent component analysis. By in-
spection, the first violin subspace is represented by
component number 4 shown in Figure 2(b), and the ac-
companiment chords on second violin, viola and ’cello
occupy the subspace spanned by the remaining 4 com-



ponents. The extracted components form a spectro-
gram for each subspace that is inverted to yield a sep-
arated signal. Figures 3(a) and 3(b) show the results
of extraction applied to the Beethoven string quartet
excerpt. Interestingly, the sources correspond to dif-
ferent functions in the string quartet; the first violin
holds a melody note, and the remaining instruments
play a chord in a repeating rhythm that accompanies
the first violin. This type of separation has many po-
tential applications in automatic music analysis and
machine listening.

The decomposition shown above operates on a one-
dimensional source mixture signal composed of ¢ inde-
pendent sources,

[

s(t) =) 55(t). (5)

=1

A spectrogram is obtained by projection to a new
basis. The one-dimensional input signal s(t) is split
into finite-length random vectors; s(¥) € R* where
1 < k < m is an ordered frame index. The windowed
signal is multiplied by a n x w transformation matrix
M, where n is the number of channels of the transfor-
mation. Taking the absolute value of the transformed
signal produces an observation vector x(*) € R™ for
each windowed input frame k. We may represent a
magnitude Fourier transform or a smoothed constant-
Q filterbank output in this manner,

xF) = pTsh) (6)

By convention, each column of a spectrogram corre-
sponds to a spectral slice which is a snapshot of the
spectrum at time k. The rows contain the spectral
channels. Each frame of the input spectrogram is ex-
pressed as a weighted sum of p independent basis vec-
tors, z; € R™. These basis vectors are themselves spec-
tral slices that represent features of the spectrum that
can be separated due to their statistical independence.

The basis vectors are defined to be static but each is
weighted by a time-varying scalar coefficient, ygk). A
weighted sum of p basis vectors reconstructs a spectro-
gram frame from independent features:

p
x*) = Z yz(k)zi. (7
i=1

The utility of the subspace method is greatest when
the independent spectral features correspond to indi-
vidual sources in a mixture. Each source is spanned by
a subset of such basis vectors that define a subspace.
The subspaces are composed of a matrix with basis
vectors in the columns,

7, = [z@, 20, ... zg)] ,Z;jc{z}. (8

Now, to reconstruct a spectrogram frame, each
source subspace is included as a weighted sum of its
basis vectors. The weight coefficients are obtained by
projection of the input onto each basis component in
the subspace. Assuming orthonormal components,

y]-T = fo 9)

which is the projection of vector x onto the subspace
spanned by the basis vectors Z;. By successively pro-
jecting on to each of the ¢ sets of basis vectors, the
frames of the input spectrogram are decomposed into
sums of independent subspaces,

X = Z1y1 + Zoys + -+ Zeyr. (10)

To extend the method to a block of spectrogram
frames, the familiar transposed two-dimensional form
of a spectrogram is expressed as a matrix: X (n,k) =
X7, which is a matix with n rows and k columns,

c
Xt =37yl (11)
7j=1

This expression partitions a block of spectrogram
frames into separate spectrograms formed from static
multi-component subspaces of the input manifold.
Fach spectrogram corresponds to a subspace and is
obtained from a set of basis vectors:

Xj =z;y/" (12)

The weights, Y}, corresponding to each subspace
are obtained by projection of the input spectrogram
against each subspace basis in a similar manner to
Equation 9:

Y; = XZ;. (13)

Finally, the separated source signals, s;, are ob-
tained by inverting the transformation carried out by
Equation 6. This step completes the subspace separa-
tion method for projections of a one-dimensional signal
onto a manifold.

sj = M_lXj (].4)
Extensions of the subspace method to the complex

case are well defined with X# € C"** where X
indicates the Hermitian transpose, thus,

X" =27y, Z; e C™0i, Y; € P, (15)
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Figure 4: (a) Constant-Q spectrogram of a drum mixture.
(b) Extracted bass drum subspace

2.2 Non-stationary sources

The extension of ISA to non-stationary spectrogram
components is derived by assuming subspaces to be ap-
proximately stationary for an interval of spectrogram
frames, dk. The decomposition of a spectrogram is ex-
pressed in blocks of frames, each block having a unique
subspace decomposition.

We represent a blocked version of ISA by rewriting
Equation 7 to include a block index I,

p
(kD) — Z ygk’l)zgl) (16)
i=1

which admits a unique subspace decomposition for
each block.

[X(l)]T _ iZJ(_l)[Y}(l)]T‘ (17)

i=1

Blocks are composed of independent spectrogram
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Figure 5: (a) Extracted snare drum subspace. (b) Ex-
tracted cowbell subspace. The components were analysed

in 0.25s intervals and grouped in time using ixegram clus-
tering.

subspaces, [X J(l)]T, spanned by a subset of basis vec-
tors,

X7 =z T, (18)

The blocks may overlap if a temporally smooth sub-
space decomposition is required. Block lengths are cho-
sen in the range 0.25s < dk < 10s and block hop sizes
are typically chosen to be half the block length. If each
spectrogram frame is .02s then a block length of 0.5s
produces an observation matrix, X ©), with 25 rows.

Figures 4 and 5 show a non-stationary decompo-
sition of a drum mixture into separate source sub-
spaces. The spectrograms are reconstructed from 0.25s
blocks of basis vectors. Blocks corresponding to similar
sources are identified by component grouping which is
discussed in Section 3.1.



2.3 Maximally informative subspace

In the preceeding section, a set of basis vectors defines
a subspace of the input that is subjected to ICA de-
composition into source subspaces. The size of the set,
p, is chosen to be smaller than the number of variates,
n. An estimate of p is given by the non-zero singular
values of a singular value decomposition (SVD) of the
input matrix,

X =UuxvT. (19)

The choice of p determines how many of the right
singular vectors, v; € V, will be passed to ICA extrac-
tion. These vectors define a subspace of the input, and
this subspace is chosen to be maximally informative.

An SVD orders basis vectors by the size of their
singular values, o;, which are the diagonal elements
of ¥. A threshold, 0 < ¢ < 1, is defined such that

ﬁ ©_, 0; > ¢ which gives a value for p.

i=1
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Figure 6: Cumulative sum of basis component singular
values for the string quartet extract. Singular values are
normalized such that )"  o; = 1. An optimal number of
basis components, p, is chosen to maximize the information
contained in the chosen basis subspace.

By Gibbs second theorem, a Gaussian distribution
maximizes the entropy over all other distributions with
the same mean and variance. The threshold, ¢, is thus
interpreted as an approximation to the proportion of
information to retain in the chosen subspace, see Fig-
ure 6.

When ¢ = 1, the full basis is retained from an SVD
for ICA decomposition. The resulting basis vectors
have a Gabor filter structure with each component hav-
ing a compact region of support in frequency. Whilst
this is a significant result from the perspective of data-
derived basis functions, such bases are not useful as
recognizable source features.

However, when ¢ < 1 the basis components appear
as spectral features with support across the entire fre-
quency range. This indicates that their is a tradeoff
between the amount of detail to keep in the ICA sub-
space, and the recognizability of the resulting features.
Complete information support yields general orthog-
onal basis functions, and deflation to a maximally in-
formative subspace yields distinct features of the input
sources.

INDEPENDENT SUBSPACE
GROUPING

To identify the components belonging to a multi-
component subspace some type of grouping must be
performed. We introduce a method for calculating
the similarities of components that enables partition-
ing into subspaces using the pair-wise dissimilarities of
independent components.

3.1 The IXEGRAM

The similarity of components is represented in an éz-
egram, the independent component cross-entropy ma-
trix. The ixegram is computed by exhaustive pair-
wise similarity measures over the set of independent
components using an approximation to the symmet-
ric Kullback-Leibler divergence. The Kullback-Leibler
divergence takes a scalar random variable, 4, and pro-
duces a measure of the distance between two probabil-
ity functions, P,(4) and P,(%). The ixegram entries
are defined by the following expressions,

D(i,j) = Ok r(2i,25), 4,5 € {1 --- n}, (20)

Ok 1 (2i,2;5) = KL(Py, (), Py, (1)). (21)

The symmetric Kullback-Leibler divergence between
two probability density functions, p and ¢, defined on
a random variable, 4, is given by:

KL(p(@),q(@) = / p(A)l(’g(g(ZD :
)

(
+ 3 oo (355)

So the independent component vectors, z; and z;,
are used to calculate probability functions in the range
of 4 and the ixegram calculates the pair-wise Kullback-
Leibler distance between all probability functions in
the set of components.

U
du




Since the symmetric Kullback-Leibler divergence is
a distance measure, it has the following useful prop-
erties: K L(P,,(4),P,;(4)) > 0 and, furthermore,

KL(P,, (1), Py, (1) = 0 iff Py, (4) = Py, (4).
The ixegram matrix has the following structure:

O0rr(z1,21) Oxr(z1,22) Orr(2z1,2,)
. Orr(Z2,21) Oxr(Z2,22) Orr(2z2,2,)
Okr(2Zn,21) Oki(Zn,22) Ok r(2Zn,2Zn)

The symmetric Kullback-Leibler divergence pro-
duces a matrix that is square symmetric therefore
DT = D. All the entries in D are non-negative and
the diagonal terms are necessarily all 0.
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Figure 7: An izegram of time-varying independent compo-
nents extracted from the drum mixture shown in Figure 4.
Dark regions indicate a high degree of similarity based on
the Kullback-Leibler entropy.

An ixegram of time-varying independent compo-
nents for the drum mixture is shown in Figure 7. The
dark regions show components that are most similar.
Components are identified by their row and column
indices, as in D(3, j).

3.2 Clustering the IXEGRAM

Due to the form of the ixegram being a symmetric, non-
negative, dissimilarity matrix, it lends itself to group-
ing with a diadic data clustering algorithm such as that
proposed by Hofmann, [17].

To find an optimal partitioning of the ixegram into
k classes, a cost function that measures within-cluster
compactness and between-cluster homogeneity is de-
fined,

n

k n

1
H(M;D) =) S L 3> MicMyDix
c=1 Ej:l 7€ =1 k=i

where D is the ixegram matrix and M is a n X k as-
signment matrix, each entry of which is the probability
of assigning component z; in class c;,

P(z1|c1)  P(z1]c2) P(z1|ck)

P(z3|c1)  P(z2)c2) P(zs|ck)
M= . . .

P(zn|c1) P(zn|c2) P(zy|ck)

A deterministic annealing algorithm finds the opti-
mal M that minimizes the cost in Equation 3.2 given
an ixegram, D. This probabilistic clustering yields
groups of components, assigned by M, both vertically,
into multi-component subspaces, and horizontally, into
dynamic component trajectories.

Figure 8 shows the results of clustering dynamic in-
dependent components into a source subspace trajec-
tory for a speaker in the context of continuous waterfall
noise. The extracted speech subspace clearly identifies
when the speech is present and significantly attenu-
ates the background noise. This example demonstrates
the application of the subspace separation method to
speech signals and concludes our discussion of dynamic
independent subspace separation.

SUMMARY

In this paper we have introduced methods for indepen-
dent subspace analysis for single-channel audio mix-
tures. It was shown that independent component anal-
ysis can be expressed as source separation from the
projection of a single-channel mixture onto a high-
dimensional manifold. The method was shown to iden-
tify multi-component source subspaces of the manifold
that contain independent source elements of the input
mixture.

Independent subspace analysis operates on subsets
of basis components spanning the input manifold.
These subsets are chosen to be maximally informative
using a cumulative sum of singular-values threshold
criterion.

We introduced the izegram as a measure space for
grouping independent basis components based on the
Kullback-Leibler differential entropy. The results of
separation and grouping experiments on a number of
contrasting examples suggest that the technique can
perform separation of source signals without paramet-
ric model fitting or prior knowledge of the composition
of input data.

Future work will explore the use of ISA for identify-
ing sources in context for the purpose of multi-media
indexing and annotation.
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