
CS144, Stanford University

TCP Congestion Control I
Slow start, congestion avoidance, triple duplicate acks

1

CS144, Stanford University

Congestion Control Motivation

2

San Francisco Boston

CS144, Stanford University

Congestion Control Motivation

3

San Francisco Boston

CS144, Stanford University

Congestion Control Motivation

4

San Francisco Boston

Congestion control: limit outstanding data so it does
not congest network, improves overall performance

CS144, Stanford University

TCP and AIMD

• TCP uses additive-increase, multiplicative decrease (AIMD)
▶ Maintains a congestion window, an estimate of how many unacknowledged segments

can be sent
▶ Increases the congestion window by one segment every RTT
▶ Halves the congestion window (or more) on detecting a loss

• A bit of history on why (the Internet collapsed)

• Explanation of how it achieves and implements AIMD

5

CS144, Stanford University

TCP History

• 1974: 3-way handshake

• 1978: TCP and IP split into TCP/IP

• 1983: January 1, ARPAnet switches to TCP/IP

• 1986: Internet begins to suffer congestion collapse

• 1987-8: Van Jacobson fixes TCP, publishes seminal TCP paper (Tahoe)

• 1990: Fast recovery added (Reno)

6

CS144, Stanford University

Three Questions

• When should you send new data?

• When should you send data retransmissions?

• When should you send acknowledgments?

7

CS144, Stanford University

Three Questions

• When should you send new data?

• When should you send data retransmissions?

• When should you send acknowledgments?

8

CS144, Stanford University

TCP Pre-Tahoe

• Endpoint has the flow control window size

• On connection establishment, send a full window of packets

• Start a retransmit timer for each packet

• Problem: what if window is much larger than what network can support?

9

CS144, Stanford University

TCP in 1986

10

Send Time (sec)

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

(k
B)

Figure from “Congestion Avoidance and Control”, Van
Jacobson and Karels. Used with permission.

CS144, Stanford University

Three Improvements

• Congestion window

• Timeout estimation

• Self-clocking

11

CS144, Stanford University

Three Improvements

• Congestion window

• Timeout estimation

• Self-clocking

12

CS144, Stanford University

Congestion Window (TCP Tahoe)

• Flow control window is only about endpoint

• Have TCP estimate a congestion window for the network

• Sender window = min(flow window, congestion window)

• Separate congestion control into two states
▶ Slow start: on connection startup or packet timeout
▶ Congestion avoidance: steady operation

13

CS144, Stanford University

Slow Start Benefits

• Slow start
▶ Window starts at Maximum

Segment Size (MSS)
▶ Increase window by MSS for

each acknowledged packet

• Exponentially grow congestion
window to sense network
capacity

• “Slow” compared to prior
approach

14

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

(k
B)

Send Time (sec)

Figure from “Congestion Avoidance and Control”, Van
Jacobson and Karels. Used with permission.

CS144, Stanford University

Congestion Avoidance

• Slow start
▶ Increase congestion window by MSS for each acknowledgment
▶ Exponential increase

• Congestion avoidance
▶ Increase by MSS2/congestion window for each acknowledgment
▶ Behavior: increase by MSS each round trip time
▶ Linear (additive) increase

15

CS144, Stanford University

State Transitions

• Two goals
▶ Use slow start to quickly find network capacity
▶ When close to capacity, use congestion avoidance to very carefully probe

• Three signals
▶ Increasing acknowledgments: transfer is going well
▶ Duplicate acknowledgments: something was lost/delayed
▶ Timeout: something is very wrong

16

CS144, Stanford University

TCP Tahoe FSM

17

Slow
Start

Congestion
Avoidance

cwnd > ssthresh
-

timeout or triple dup ack
cwnd=1, ssthresh=cwnd/2

ack

cwnd+= MSS2

cwnd

ack
cwnd+=MSS

CS144, Stanford University

TCP Tahoe Behavior

18

time

window
size

timeout

duplicate acks

timeout

ssthresh

