
Vte line-rewrapping ring design

Behdad Esfahbod

Introduction
Context for this document is in GNOME bug 336238.

The Vte ring is the data-structure holding the vte buffer scrollback data. It’s a “ring” in that
appending new items will pop the old ones out. The current design is around the idea of
abstraction of lines, physical lines in the buffer.

For compactness, we store text as UTF-8, and cell attributes as a run-length-encoded stream. As
such, lines contain a variable number of bytes. As a result, designing a ring is not as simple as
allocating the ring’s maximal memory and looping around it as a classic ring will do. Since you
cannot just “discard the beginning bytes” on a memory region or a file, we use a two-magazine
design: we fill in the first magazine until it’s full of enough data for as much scrollback as we need,
we then switch to the second magazine, discarding whatever was in it. When we fill the second
magazine of enough data for a full scrollback, we discard the first magazine and start filling it
again. At any time, we have more than one full scrollback’s worth of data. This design means that
we may store up to twice of what we actually need at any time, but that’s the price we pay for
simplicity.

The current design is around byte-streams. The ring itself uses three bytestreams: one for Unicode
text, stored as plain UTF-8; cell attributes, storing only changes in cell attributes (kinda similar to
run-length encoding); and line descriptors, which basically store the start offset of the line in the
text and attributes streams. I designed this with line-rewrapping in mind, such that rewrapping
the buffer would leave the text and attributes streams intact and would only need reencode the
line descriptors. The aim of this document is to try to come up with a line descriptor design that
wouldn’t need reencoding to being with.

Finally, the bytestreams are currently implemented as data structures backed by two POSIX
files for the two magazines. The files are created as temp files and immediately unlinked after
opening. The design goal was to add a few adaptors to be used before data actually hits the file
bytestreams. In particular: a zlib compress()/decompress() adaptor to further reduce our footprint
(though, being file-backed, this is less urgent), and, for security reasons, an encryption adaptor

https://bugzilla.gnome.org/show_bug.cgi?id=336238
https://bugzilla.gnome.org/show_bug.cgi?id=336238
https://bugzilla.gnome.org/show_bug.cgi?id=336238
https://bugzilla.gnome.org/show_bug.cgi?id=336238
https://bugzilla.gnome.org/show_bug.cgi?id=664611
https://bugzilla.gnome.org/show_bug.cgi?id=664611
https://bugzilla.gnome.org/show_bug.cgi?id=664611

that would encrypt/decrypt data using industry-strength algorithms (AES256?) and a per-terminal
random key. The encryption adaptor is more urgent and I encourage people to go ahead and write
it. Finally, either of these may serve as a batching adaptor, so we may not need a separate one, but
otherwise, we also may want a batching buffer adaptor such that we don’t cause disk writes with
each line going into the buffer. That said, I wish the kernel had a way for us to tell it “it’s alright
to keep data for this file in the buffer indefinitely; don’t rush spinning the disk plates.” Finally,
we may also want to have a memory-backed bytestream implementation that mlock()’s memory
regions, to make sure buffer data never leaves main memory. This may be used to mark security-
sensitive buffers, though how to do that short of adding an app setting is not clear to me.

With this introduction behind us, lets talk about rewrapping buffer design.

Design
What we need from the buffer, other than appending data to it, is to request for a line at a given
index, given a certain terminal width, and asking for the total number of lines. The ring size is also
currently specified as a number of lines, though it doesn’t have to be like that. We may very well
limit ring size in megabytes or whatever else we desire.

Note that lines can be hard-wrapped if a newline preceded them, or soft-wrapped if there was no
newline. When terminal width changes, it’s the soft-wrapped lines that move around, merging
with previous lines and then cut again at the new terminal width. As such, lets define a paragraph
as the maximal set of lines where first one is hard-wrapped and the following ones are soft-
wrapped. The trick to have a buffer that doesn’t need explicit rewrapping is to keep paragraphs,
not lines, in the buffer. We then need an efficient way to translate between paragraphs and lines
given a certain terminal width. Lets imagine that we have an efficient way to answer “how many
lines” for a paragraph given a certain width, and that we can also efficiently fetch a certain line in
the paragraph. Note that this is not hard to do for small paragraphs, but if you have a looooong
paragraph (eg. a 10mb paragraph) then this in itself becomes a problem, short of adding fancy
datastructures to the paragraph level. But for now we assume that paragraphs are short and we
can brute-force things.

Let me add some discussion for the intra-paragraph stuff, even if we imagined it’s trivial. There
are two things that make the paragraph to line mapping tricky: tab characters, and CJK double-
width characters. Without those, some of the paragraph-to-line operations would be linear and
trivial: number of lines in the paragraph? Easy: divide paragraph length by the terminal width and
round up, etc. But in presence of tabs and double-width characters we have to scan things to map.
What’s more interesting for the next-level design is the simple “how many lines per paragraph”
question answered over arbitrary widths. This function, lets call it n-lines, is an integer non-

increasing function over the width. For now, lets assume that we can efficiently represent this
function, for some definition of efficient.

Given the n-lines function for the paragraph, we can build a ring line descriptor system like this:
the ring itself will consist of a list of paragraphs. Each paragraph has an n-lines structure. We
impose a B-tree structure over the paragraphs, were each node in the B-tree also has the n-lines
function of all the paragraphs in it combined. In this manner, the question of “give me line X
for width W” can be efficiently implemented in log(m) calls to n-lines functions where m is the
number of paragraphs. If designed with the right size parameters, it may be fine to keep the B-
tree in-memory, as opposed to serializing it to a bytestream. This will significantly simplify the
implementation.

The way the ring is accessed is very predictable: access has extreme locality properties: most
accesses are for rendering the terminal, and those access lines laid after each other at one certain
area in the buffer. As such, a cursor data-structure may speed up access, though that must be
considered only if profiling shows that speeding up is necessary.

With the high-level design out of the way, lets think about the n-lines implementation.

N-lines
We want this to be efficient in a few ways:

● Memory efficient; consuming a few handfuls of bytes at most, for most cases,
● Fast to call,
● Ideally, for ASCII-only paragraphs, consume zero bytes and be super-fast,

The last item is easy to achieve: if paragraph has no peculiarities (no tabs, no double-width chars),
the mapping is trivial and linear. Non-linearity is introduced if either tabs or double-width chars
exist, OR, if this is a sum of multiple n-lines (ie. includes multiple paragraphs). This assumes that
we know the number of cells / characters in the range. But we can keep that as part of the n-lines
datastructure.

Call the previous thing the “linear” n-lines. To store a general n-lines function we can encode its
difference from the linear n-lines. Ie. you compute the linear output, then add a number to it. The
number is an increasing function of width, and we can encode that as a list of (width,delta) items.
You’d then bsearch through the list for your width, find the delta, and add it to the linear result.

TODO further discussion re above design. Though, at this point, perhaps best way to assess it is to
prototype it.

Further Thoughts
Thinking about this design, I like to note that it can be extended to not care about paragraphs per
se, but just about the stream in general. Ie. the problem with long-paragraphs can be obviated
by keeping the total stream in a B-tree, with n-lines functions. Sure, lines now may span multiple
B-tree nodes, but that doesn’t sound like a huge problem, as long as the n-lines function is still
efficient to implement.

