to be updated. When the system cannot be duplicated, it is possible to rely on
runtime testing [27].

There are two main difficulties with using a component at the same time
in the contract of the production and in the context of testing. Firstly, testing
involves interactions with the System Under Test (SUT), i.e.?sending stimuli to
verify that the SUT responds as expected. Runtime Testing bears the danger
that testing interaction with the component will affect its other users. Test
operations and data must be ensured to stay in the testing realm and not affect
the other clients of a component or sub-system. This characteristic is known as
test isolation [24].

Secondly, when testing components which have effect outside of the system
(i.e. they produce the output of the system) some operations might not be safe
to test at runtime. For instance it might not be possible to write in a database
containing bank account information, or controlling the actuators in a robot
while they are already being controlled following a different control algorithm.
Similarly, it can also happen that an input resource is unique. For instance, if
a web service listens on one TCP/IP port, it is not possible to run another web
service on the same port simultaneously. There are several possible solutions,
such as setting up a simulator of the outside world, sharing the resource between
the component under test and the component in production, or not executing at
all the test case. Nevertheless, whichever approach is taken, it is first necessary
to be able to define this test sensitivity [24] of the component. The platform
must provide a way for the component to “tell the difference” between test and
non-test data or event, this permit the components to be test-aware.

Handling test isolation and test sensitivity is described in Section 4.

3 Integration testing in event-based systems

As—seen—previousty event-based platforms allows to decouple the system into
small parts which handle a specific type of event (or data) but in order to verify
the correct behaviour of the total system, testing each part independently is not
sufficient. It is also necessary to verify that the components interact correctly
with each other. This is the goal of integration testing.

3.1 Assumptions on the system

Before detailing further some approaches to test the integration of an event-
based system, it is important to define some basic assumptions and expectations
on the system under consideration.

Firstly, we consider that the system is component-based [25]. That is, made
of separate software units which can only interact with each other via a pre-
defined interface. In the context of publish/subscribe platforms, an interface
is defined by the data types which will be received or sent (a simple event
being represented as a data type which contains no data). Components may be
hierarchically defined: a component can be composed out of several other sub-
components, in which case it cannot not contain logic by its own. Components
need not be pure: they can have state and interact with the context. They can
also be black, or “grey” boxes, i.e. their specification being known but their
implementation being unknown.


gross
Highlight
context of normal operation

gross
Highlight
First, testing ...

gross
Highlight

gross
Highlight
no new paragraph

gross
Highlight
Second, ...

gross
Highlight
or refraining from executing the test cases.

gross
Highlight
didn't Alberto call this runtime testability (we should use our own terminology consistently).

gross
Highlight
which requires a component to be what we call "test-aware".

gross
Cross-Out

gross
Highlight
event-based platforms allow decoupling of components that are handling specific operations on data. Unit testing of the components is not sufficient in order to validate the correctness of the entire system made of such components. In addition, it is necessary to check that the components interact correctly with each other. This validation is the goal of integration testing.

gross
Highlight
First, ...

gross
Highlight
predefined interfaces

gross
Highlight

gross
Highlight
what is this? Where did you find this concept?

gross
Highlight
is known, but their implementation is not.


