Concepts,
architecture, and design

Senior Level Linux Professional (LPIC-3)
Skill Level: Intermediate

Sean A. Walberg (sean@ertw.com)
Senior Network Engineer

23 Oct 2007

In this tutorial, Sean Walberg helps you prepare to take the Linux Professional
Institute® Senior Level Linux Professional (LPIC-3) exam. In this first in a series of
six tutorials, Sean introduces you to Lightweight Directory Access Protocol (LDAP)
concepts, architecture, and design. By the end of this tutorial, you will know about
LDAP concepts and architecture, directory design, and schemas.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at three
levels: junior level (also called "certification level 1"), advanced level (also called
"certification level 2"), and senior level (also called "certification level 3"). To attain
certification level 1, you must pass exams 101 and 102. To attain certification level
2, you must pass exams 201 and 202. To attain certification level 3, you must have
an active advanced-level certification and pass exam 301 ("core"). You may also
pass additional specialty exams at the senior level.

developerWorks offers tutorials to help you prepare for the five junior, advanced, and
senior certification exams. Each exam covers several topics, and each topic has a
corresponding self-study tutorial on developerWorks. Table 1 lists the six topics and
corresponding developerWorks tutorials for LPI exam 301.

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 24

mailto:sean@ertw.com
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Table 1. LPl exam 301: Tutorials and topics

LPI exam 301 topic developerWorks tutorial Tutorial summary

Topic 301 LPI exam 301 prep: (This tutorial.) Learn about
Concepts, architecture, and LDAP concepts and
design architecture, learn how to

design and implement an
LDAP directory, and learn
about schemas. See the

detailed objectives below.

Topic 302 LPI exam 301 prep: Coming soon.
Installation and development

Topic 303 LPI exam 301 prep: Coming soon.
Configuration

Topic 304 LPI exam 301 prep: Coming soon.
Usage

Topic 305 LPI exam 301 prep: Coming soon.

Integration and migration

Topic 306 LPI exam 301 prep: Coming soon.
Capacity planning

To pass exam 301 (and attain certification level 3), you should:

» Have several years experience with installing and maintaining Linux® on
a number of computers for various purposes.

* Have integration experience with diverse technologies and operating
systems.

» Have professional experience as, or training for, an enterprise-level Linux
professional (including having experience as a part of another role).

* Know advanced and enterprise levels of Linux administration including
installation, management, security, troubleshooting, and maintenance.

* Be able to use open source tools to measure capacity planning and
troubleshoot resource problems.

» Have professional experience using LDAP to integrate with UNIX® and
Microsoft® Windows® services, including Samba, Pluggable
Authentication Modules (PAM), e-mail, and Microsoft Active Directory
directory service.

* Be able to plan, architect, design, build, and implement a full environment
using Samba and LDAP as well as measure the capacity planning and
security of the services.

* Be able to create scripts in Bash or Perl or have knowledge of at least
one system-programming language (such as C).

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular.

Concepts, architecture, and design
Page 2 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

About this tutorial

Welcome to "Concepts, architecture, and design," the first of six tutorials designed to
prepare you for LPI exam 301. In this tutorial, you learn about LDAP concepts and
architecture, how to design and implement an LDAP directory, and about schemas.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weights.
Objectives

Table 2 provides the detailed objectives for this tutorial.

Table 2. Concepts, architecture, and design: Exam objectives covered in this

tutorial
LPI exam objective Objective weight Objective summary
301.1 3 Be familiar with LDAP and
Concepts and architecture X.500 concepts.
301.2 2 Design and implement an
Directory design LDAP directory while planning
an appropriate Directory
Information Tree to avoid
redundancy. You should have
an understanding of the types
of data that are appropriate for
storage in an LDAP directory.
301.3 3 Be familiar with schema
Schemas concepts and the base

schema files included with an
OpenLDAP installation.

Prerequisites

To get the most from this tutorial, you should have an advanced knowledge of Linux
and a working Linux system on which to practice the commands covered.

If your fundamental Linux skills are a bit rusty, you may want to first review the
tutorials for the LPIC-1 and LPIC-2 exams.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

System requirements

To follow along with the examples in these tutorials, you need a Linux workstation

with the OpenLDAP package and support for PAM. Most modern distributions meet

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 24

schemas.html
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

these requirements.

Section 2. Concepts and architecture

This section covers material for topic 301.1 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 3.

In this section, learn about:

* LDAP and X.500 technical specification
» Attribute definitions

» Directory namespaces

» Distinguished names

* LDAP Data Interchange Format

* Meta-directories

» Changetype operations

Most of the LPIC-3 exam focuses on the use of the Lightweight Directory Access
Protocol (LDAP). Accordingly, the first objective involves understanding what LDAP
Is, what it does, and some of the basic terminology behind the concept. When you
understand this, you will be able to move on to designing your directory and
integrating your applications with the directory.

LDAP, what is it?

Before talking about LDAP, let's review the concept of directories. The classic
example of a directory is the phone book, where people are listed in alphabetical
order along with their phone numbers and addresses. Each person (or family)
represents an object, and the phone number and address are attributes of that
object. Though not always obvious at a glance, some objects are businesses instead
of people, and these may include fax numbers or hours of operation.

Unlike its printed counterpart, a computer directory is hierarchical in nature, allowing
for objects to be placed under other objects to indicate a parent-child relationship.
For instance, the phone directory could be extended to have objects representing
areas of the city, each with the people and business objects falling into their
respective area objects. These area objects would then fall under a city object,
which might further fall under a state or province object, and so forth, much like
Figure 1. This would make a printed copy much harder to use because you would
need to know the name and geographical location, but computers are made to sort
information and search various parts of the directory, so this is not a problem.

Concepts, architecture, and design
Page 4 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Figure 1. A sample directory
Springfield (Town)

— Wast End (Area)

— East End {Area)

Simpson (Family)
Address; 742 Evergreen Terrace
Phone: 553-563-1212
Looking at Figure 1, knowing where the Simpson's record is tells you more than just
the address and phone number. You also know they are in the East end in the town
of Springfield. This structure is called a tree. Here, the root of the tree is the
Springfield object, and the various objects represent further levels of branching.

This directory-based approach to storing data is quite different than the relational
databases that you may be familiar with. To compare the two models, Figure 2
shows what the telephone data might look like if modeled as a relational database.

Figure 2. Directory data modeled in relational form

Town Area Fearson
TownlD ArealD PersionlD
Mame Mame MName
Coordinates Coordinates Address
Mayor TownlD Phone Mumber

ArealD

In the relational model, each type of data is a separate table that allows different
types of information to be held. Each table also has a link to its parent table so that
the relationships between the objects can be held. Note that the tables would have
to be altered to add more information fields.

Remember that nothing about the directory model places any restrictions on how the
data may be stored on disk. In fact, OpenLDAP supports many back ends including
flat files and Structured Query Language (SQL) databases. The mechanics of laying
out the tables on disk are largely hidden from you. For instance, Active Directory
provides an LDAP interface to its proprietary back end.

The history of LDAP

LDAP was conceived in Request for Comments (RFC) 1487 as a lightweight way to
access an X.500 directory instead of the more complex Directory Access Protocol.
(See the Resources section for links to this and related RFCs.) X.500 is a standard
(and a family of standards) from the International Telecommunication Union (ITU,
formerly the CCITT) that specifies how directories are to be implemented. You may
be familiar with the X.509 standard that forms the core of most Public Key
Infrastructure (PKI) and Secure Sockets Layer (SSL) certificates. LDAP has since

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

evolved to version 3 and is defined in RFC 4511.

Connecting to an X.500 database initially required the use of the Open Systems
Interconnection (OSI) suite of protocols and, in true ITU fashion, required
understanding of thick stacks of protocol documentation. LDAP allowed Internet
Protocol (IP)-based networks to connect to the same directory with far fewer
development cycles than using OSI protocols. Eventually the popularity of IP
networks led to the creation of LDAP servers that support only as many X.500
concepts as necessary.

Despite the triumph of LDAP and IP over X.500 and OSI, the underlying organization
of the directory data is still X.500-ish. Concepts that you will learn over the course of
this tutorial, such as Distinguished Names and Object Identifiers, are brought up
from X.500.

X.500 was intended as a way to create a global directory system, mostly to assist
with the X.400 series of standards for e-mail. LDAP can be used as a global
directory with some effort, but it is mostly used within an enterprise.

A closer look at naming and attributes

In the LDAP world, names are important. Names let you access and search records,
and often the name gives an indication of where the record is within the LDAP tree.
Figure 3 shows a typical LDAP tree.

Figure 3. A typical LDAP tree showing a user
de=ERTW,dc=COM

L ou=people, dc=ERTW dc=COM

I— cn=Sean Walberg, cu=people dc=ERTW dc=COM

cn=5Sean Walberg

Mail=sean@ertw.com

Description=Something about me

abjectClass=inetOrgPerson
At the top, or root, of the tree is an entity called dc=ert w, dc=com The dc is short
for domain component. Because er t wis under the . comtop-level domain, the two
are separated into two different units. Components of a name are concatenated with
a comma when using the X.500 nomenclature, with the new components being
added to the left. Nothing technically prevents you from referring to the root as
dc=ert w. com though in the interest of future interoperability it is best to have the
domain components separate (in fact, RFC 2247 recommends the separate domain
components).

dc=ert w, dc=comis a way to uniquely identify that entity in the tree. In X.500
parlance, this is called the distinguished name, or the DN. The DN is much like a
primary key in the relational-database world because there can be only one entity
with a given DN within the tree. The DN of the topmost entry is called the Root DN.

Concepts, architecture, and design
Page 6 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Under the root DN is an object with the DN of ou=peopl e, dc=ertw, dc=com ou
means organizational unit, and you can be sure it falls under the root DN because
the ou appears immediately to the left of the root DN. You can also call ou=peopl e
the relative distinguished name, or RDN, because it is unique within its level. Put in
recursive terms, the DN of an entity is the entity's RDN plus the DN of the parent.
Most LDAP browsers show only the RDN because it eliminates redundancy.

Moving down the tree to cn=Sean Wal ber g, ou=peopl e, dc=ert w, dc=com you
find the record for a person. cn means common name. For the first time, though, a
record has some additional information in the form of attributes. Attributes provide
additional information about the entity. In fact, you'll see the leftmost component of
the DN is duplicated,; in this case, it's the cn attribute. Put another way, the RDN of
an entity is composed of one (or more) attributes of the entity.

While mai | and descri pti on are easy enough to understand, obj ect Cl ass is
not as obvious. An object class is a group of attributes that correspond to a particular
entity type. One object class may contain attributes for people and another for UNIX
accounts. By applying the two object classes to an entity, both sets of attributes are
available to be stored.

Each object class is assigned an object identifier (OID) that uniquely identifies it. The
object class also specifies the attributes, and which ones are mandatory and which
are optional. Mandatory attributes must have some data for the entity to be saved.
The object class also identifies the type of data held and whether multiple attributes
of the same name are allowed. For instance, a person might have only one
employee number but multiple first names (for example, Bob, Robert, and Rob).

The bottom-level objects are not the only ones to have object classes associated
with them. These objects, called containers, also have object classes and attributes.
The peopl e ou is of type or gani zat i onal Uni t and has a description attribute
along with ou=peopl e to create the RDN. The root of the tree is of type dcObj ect
and or gani zat i on. Knowing which object classes to assign an object depends on
what is being held in the object and under it. Refer to the Schemas section for more
detalils.

The root DN also defines the namespace of the tree or, to be more technical, the
Directory Information Tree (DIT). Something ending in dc=i bm dc=comwould fall
outside of the namespace from Figure 3, whereas the record for Sean Wl ber g
falls within the namespace. With that in mind, though, it is possible that one LDAP
server contains multiple namespaces. A somewhat abstract item called the Root
DSE contains the information about all the namespaces available on the server.
DSE means the DSA-Specific Entry, and DSA means Directory System Agent (that
is, the LDAP server).

Figure 4 summarizes the terminology associated with the LDAP tree.

Figure 4. Summary of LDAP terminology

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 24

schemas.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Mamespace

oot DM

i

de=ERTW dc=COM —+—
|— ou=people dc=ERTW dc=COM —— Distinguished name

-"‘\-a.l I. s e --""'—-?
-Oniaines |— cn=5ean \Walberg - Relative distinguished

cn=Sean Walberg name
Mail=sean@ertw.com
Altribute - E:'Erscngtiun=5c:umathing about me
objectClass=inetOrgPearson
Finally, an LDAP tree can be synchronized with other trees or data sources. For
instance, one branch of the tree could come from a security system, another from a
customer database, and the rest could be stored in the LDAP server. This is called a
meta-directory and is intended to be a single source of data for applications such as
single sign-on.

The LDIF file

Data can get into an LDAP server in one of two ways. Either it can be loaded in over
the network, using the LDAP protocol, or it can be imported from the server through
a file in the LDAP Data Interchange Format (LDIF). LDIF can be used at any time,
such as to create the initial tree, and to perform a bulk add or modify of the data
some time later. The output of a search can also be in LDIF for easy parsing or
import to another server. The full specification for LDIF is in RFC 2849 (see
Resources for a link).

Adding records
The LDIF that generated the tree from Figure 3 is shown in Listing 1.

Listing 1. A simple LDIF file to populate a tree

This is a coment

dn: dc=ertw, dc=com

dc: ertw

description: This is nmy conpany

the description continues on the next |ine
i ndented by one space

obj ect C ass: dcObj ect

obj ect Cl ass: organi zation

o:. ERTW COM

dn: ou=peopl e, dc=ertw, dc=com

ou: people

description: Container for users
obj ectcl ass: organi zati onal unit

dn: cn=Sean WAl ber g, ou=peopl e, dc=ertw, dc=com
obj ectcl ass: inet OrgPerson

cn: Sean Wl berg

cn: Sean A. Wl berg

sn: WAl berg

honephone: 555-111-2222

Concepts, architecture, and design
Page 8 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

mai |l : sean@rtw. com
description: Watch out for this guy
ou: Engi neering

Before delving into the details of the LDIF file, note that the attribute names are case
insensitive. That is, obj ect cl ass is the same as both obj ect C ass and
OBJECTCLASS. Many people choose to capitalize the first letter of each word except
the first, such as obj ect d ass, honmePhone, and

t hi sl sAReal | yLongAttri bute.

The first line of the LDIF shows a UNIX-style comment, which is prefixed by a hash
sign (#), otherwise known as a pound sign or an octothorpe. LDIF is a standard
ASCII file and can be edited by humans, so comments can be helpful. Comments
are ignored by the LDAP server, though.

Records in the LDIF file are separated by a blank line and contain a list of attributes
and values separated by a colon (). Records begin with the dn attribute, which
identifies the distinguished name of the record. Figure 1, therefore, shows three
records: the dc=er t w, ou=peopl e, and cn=Sean \Wal ber g RDNSs, respectively.

Choosing attributes

The attribute names may be confusing at this point. How do you
choose which object class to assign a record? How do you find out
which attributes are available? How do you know that o stands for
organization?

To put it very simply, the answers to all of these questions lie in the
schema, which is covered in Schemas. The schema provides a
description of which attributes mean what. The schema also maps
attributes into object classes. Adding an object class to a record
allows you to use the attributes that fall within it.

The final piece of the puzzle is to understand how the LDAP tree is
to be used. If you're going to be authenticating UNIX accounts
against the tree, your users had better have an object class that
gives them the same user i d attribute that your system is looking
for.

Looking back at Figure 1, you can see the first record defined is the root of the tree.
The distinguished name comes first. Next comes a list of all the attributes and
values, separated by a colon. Colons within the value do not need any special
treatment. The LDAP tools understand that the first colon separates the attribute
from the value. If you need to define two values for an attribute, then simply list them
as two separate lines. For example, the root object defines two object classes.

Each record must define at least one object class. The object class, in turn, may
require that certain attributes be present. In the case of the root object, the

dcObj ect object class requires that a domain component, or dc, be defined, and
the or gani zat i on object class requires that an organization attribute, or o, be
defined. Because an object must have an attribute and value corresponding to the
RDN, the dchj ect object class is required to import the dc attribute. Defining an o
attribute is not required to create a valid record.

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 24

schemas.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

A descri pti on is also used on the root object to describe the company. The
purpose here is to demonstrate the comment format. If your value needs to span
multiple lines, start each new line with a leading space instead of a value.
Remember that specifying multiple at t ri but e: val ue pairs defines multiple
instances of the attribute.

The second record in Figure 1 defines an or gani zat i onal Uni t, which is a
container for people objects in this case. The third defines a user of type

I net O gPer son, which provides common attributes for defining people within an
organization. Note that two cn attributes are defined; one is also used in the DN of
the record. The second, with the middle initial, will help for searching, but it is the
first that is required to satisfy the condition that the RDN be defined.

In the user record there is also an ou that does not correspond to the

or gani zat i onal Uni t the user is in. The container the user object belongs to can
always be found by parsing the DN. This ou attribute refers to something defined by
the user, in this case a department. No referential integrity is imposed by the server,
though the application may be looking for a valid DN such as

ou=Engi neeri ng, ou=G oups, dc=ertw, dc=com

The only other restriction placed on LDIF files that add records is that the tree must
be built in order, from the root. Figure 1 shows the root object being built, then an
ou, then a user within that ou. Now that the structure is built, users can be added
directly to the peopl e container, but if a new container is to be used, it must be
created first.

The LDIF behind adding objects is quite easy. The format gets more complex when
objects must be changed or deleted. LDIF defines a changet ype, which can be
one of the following:

* add adds an item (default).
* del et e deletes the item specified by the DN.

* nodr dn renames the specified object within the current container, or
moves the object to another part of the tree.

e noddn is synonymous with nodr dn.
* nodi fy makes changes to attributes within the current DN.

Deleting users

Deleting an item is the simplest case, only requiring the dn and changet ype.
Listing 2 shows a user being deleted.

Listing 2. Deleting a user with LDIF

dn: cn=Fred Snith, ou=peopl e, dc=ertw, dc=com
changetype: del ete

Concepts, architecture, and design
Page 10 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Manipulating the DN

Manipulating the DN of the object is slightly more complex. Despite the fact that
there are two commands, noddn and nodr dn, they do the same thing! The
operation consists of three separate parts:

1. Specify the new RDN (leftmost component of the DN).

2. Determine if the old RDN should be replaced by the new RDN within the
record, or if it should be left.

3. Optionally, move the record to a new part of the tree by specifying a new
parent DN.

Consider Jane Smith, who changes her name to Jane Doe. The first thing to do is
change her cn attribute to reflect the name change. Because the new name is the
primary way she wishes to be referred to, and the common name forms part of the
DN, the noddn operation is appropriate. (If the common name weren't part of the
DN, this would be an attribute change, which is covered in the next section.) The
second choice is to determine if the cn: Jane Sm t h should stay in addition to
cn: Jane Doe, which allows people to search for her under either name. Listing 3
shows the LDIF that performs the change.

Listing 3. LDIF to change a user's RDN

Specify the record to operate on

dn: cn=Jane Snith, ou=peopl e, dc=ertw, dc=com

changet ype: noddn

Specify the new RDN, including the attribute

new dn: cn=Jane Doe

Should the old RDN (cn=Jane Snmith) be deleted? 1/0, Default = 1 (yes)
del eteol drdn: O

Listing 3 begins by identifying Jane's record, then the noddn operator. The new
RDN is specified, continuing to use a common name type but with the new name.
Finally, del et eol dr dn directs the server to keep the old name. Note that while
newr dn is the only necessary option to the nroddn changetype, if you omit

del et eol dr dn, the action is to delete the old RDN. According to RFC 2849,

del et eol dr dn is a required element.

Should the new Mrs. Jane Doe be sent to a new part of the tree, such as a move to
ou=manager s, dc=er tw, dc=com the LDIF must specify the new part of the tree
somehow, such as in Listing 4.

Listing 4. Moving arecord to a new part of the tree

dn: cn=Jane Doe, ou=peopl e, dc=ertw, dc=com
changetype: nodrdn

new dn: cn=Jane Doe

del eteol drdn: O

newsuperi or: ou=nmanagers, dc=ertw, dc=com

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks®

Curiously, a new RDN must be specified even though it is identical to the old one,
and the OpenLDAP parser now requires that del et eol dr dn is present despite it
being meaningless when the RDN stays the same. newsuper i or follows, which is
the DN of the new parent in the tree.

One final note on the nodr dn operation is that the order matters, unlike most other
LDIF formats. After the changet ype comes the newr dn, followed by
del et eol dr dn, and, optionally, newsuperi or .

Modifying attributes

The final changet ype is nodi f y, which is used to modify attributes of a record.
Based on the earlier discussion of noddn, it should be clear that nodi f y does not
apply to the DN or the RDN of a record.

Listing 5 shows several modifications made to a single record.

Listing 5. Modifying a record through LDIF

dn: cn=Sean Wl ber g, dc=ertw, dc=com
changetype: nodify

repl ace: honePhone

honePhone: 555-222- 3333

changetype: nodify
add: title
title: network guy

changetype: nodify
del ete: mail

The LDIF for the nodi fy operation looks similar to the others. It begins with the DN
of the record, then the changet ype. After that comes either r epl ace: , add: , or
del et e: , followed by the attribute. For del et e, this is enough information. The
others require the attribute:value pair. Each change is followed by a dash (-) on a
blank line, including the final change.

LDIF has an easy-to-read format, both for humans and computers. For bulk import
and export of data, LDIF is a useful tool.

ibm.com/developerWorks

Section 3. Directory design

This section covers material for topic 301.2 for the Senior Level Linux Professional
(LPIC-3) exam 301. The topic has a weight of 2.

In this section, learn about:

Concepts, architecture, and design

Page 12 of 24

© Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

» Defining LDAP directory content
» Directory organization

* How to plan appropriate Directory Information Trees

Determining if LDAP is appropriate

Like any other tool, LDAP is not appropriate for every solution. Before choosing
LDAP, you must ask yourself some questions:

» How often will changes be made, and what kind of changes are they?
* What will be using the data?

* What kind of queries will be made against the data?

* Is the information hierarchical in nature?

LDAP databases are geared toward read-intensive operations. People may only
change personal information a few times a year, but we can expect to look up
attributes far more than that, such as resolving the User | D owning a file to a
printable name when looking through a directory. LDAP data tends to be heavily
indexed, which means every change to the underlying data requires multiple
changes to the indexes that help the server find the data later. LDAP also doesn't
offer a means to make mass updates to the tree, other than performing a search and
then modifying each individual DN.

The LDAP specifications do not define transactions, which are common in relational
databases. Transactions ensure that all the operations within the transaction
succeed, or else the data is rolled back to the pre-transaction state (individual
servers may implement this, but it is not a requirement). These limitations on
updating data and the lack of transactions make LDAP a poor choice for bank
transactions.

Determining the user, or the consumer, of the data is also important. If none of the
consumers speak LDAP, then LDAP may not be a good fit. To LDAP's credit, it is an
extremely simple protocol to implement and is available for most languages on most
platforms. With a mere handful of available operations defined, it can be integrated
into existing applications with ease.

LDAP provides search functionality, but with nowhere near the level of a relational
database. The LDAP server may store the underlying data using SQL, but you as
the user are abstracted from this and cannot make use of it. Thus, you are limited to
the search filters that are supported by your LDAP server. These filters will be
investigated in more detail in later articles in this series, but for now understand that
the filters are just that -- filters. You can perform some powerful searches, such as
"show me all the employees who live in Washington and those that live in Texas who
are over 40." Statements equivalent to the SQL GROUP BY are not available,
though. LDAP is best suited for look-up style operations, such as "show me the

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

username of the person with UID 4131," and "give me the names of everyone
working for Jim Smith."

Finally, the information you are trying to store should lend itself to hierarchical
storage. You could store a flat list of data in an LDAP server, but it would probably
be a waste of resources.

When you can answer these questions and have determined that LDAP is the
correct solution, it is time to design the directory tree.

Organizing your tree

The foremost idea to keep in your mind is that reorganization of the tree is
undesirable. The goal is to break down your objects such that each branch of the
tree holds objects of a similar type, but the chances of an object having to be moved
Is low. The reasons for this are twofold. One is that it's just a hassle to do. The
second is that a move changes the DN of the object, and then you have to update all
the objects that reference the moved object.

The root DN

The root of your tree should be something that represents your company. RFC 2247
calls for the use of the dc attribute and the familiar dc=exanpl e, dc=comformat to
map the company's primary domain into a DN. Your company probably has many
Internet domains but has one that is preferred. It is also common to choose
something under the | ocal top-level domain (TLD), which doesn't currently exist on
the Internet. Microsoft has long suggested using this TLD for their Active Directory
implementations despite it not being a reserved TLD.

If you don't want to use a domain name in your root DN, you can simply have an
object with obj ect cl ass: or gani zat i on, which gives a root DN of o=y
Cor por at i on.

Filling in the structure

Deciding what goes at the next level of the DIT is difficult. It is often tempting to
describe the company's organizational structure as a series of nested

or gani zat i onal Uni t objects, but companies are constantly reorganizing, which
breaks the first rule. Instead, consider using attributes to store this information
instead.

Depending on your use of the LDAP server and how you choose to name objects,
you may want to keep all users in one tree or separate them according to role. For
instance, you can create one container for employees and one for customers, or you
can group them all into a single container. The choice depends on your applications
and how you plan on managing the tree. If the sales department takes care of
managing the customer list, and the systems administrators take care of the staff, it
might be better to create two containers. Figure 5 shows a DIT that has been broken
down into customers and users.

Concepts, architecture, and design
Page 14 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Figure 5. An LDAP tree with separate branches for users and customers

g, —
de=ertw, de=com
[L [L
ou=staff ou=customers
1
ou=Asgia ou=Europe ou=Morth America

Figure 5 shows one grouping for staff and one for customers. All staff reside in the
same organizational unit (OU), but customers are broken up by region. In this
situation, this allows different people to manage their own region's customers.

If you plan on using LDAP for authentication of UNIX resources, you must then
decide where to store that information. User accounts have already been taken care
of earlier, but you will need to store groups, and possibly other maps such as hosts,
services, networks, and aliases. Which of these you store in LDAP, and which you
leave as local files depends on you and if you need to be able to update them
centrally.

The simplest case is to store each map in a separate or gani zati onal Uni t. You
will find that when configuring your UNIX system to read this information, you need
to specify the DN of the container and any filters. If you store groups in the user OU,
you will have to write some filters. You also may have to adjust the filters if you ever
make any structural changes to the staff OU.

Determining the object classes

So far the discussion has centered on the layout of the LDAP tree with the basic
goal being to avoid having to rename objects in the future. After you decide upon the
tree, you must then decide which object classes to use. It is certainly possible to
assign different object classes to objects under the same branch of the tree, but this
will almost certainly lead to maintenance problems in the future.

To add more stress to the situation, it's not always possible to add more object
classes to an object if you make a mistake. LDAP schemas define two types of
object classes: structural and auxiliary. Structural object classes usually inherit
properties from other object classes in a chain that ends up at an object class called
t op. Structural object classes can be said to define the object's identity, while

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

auxiliary object classes are there to add attributes. or gani zati onal Uni t isa
structural object class, as is i net Or gPer son. Going back to Listing 1, the top-level
entry had two object classes: dcObj ect and or gani zati on. or gani zati onis
the structural object class. dcObj ect plays the auxiliary role by defining the dc
attribute

The part that can cause problems is that an entry can only have one structural object
class. Sometimes you see i net Or gPer son, or gani zat i onal Per son, per son,
and t op in the same record, but they are all part of the same inheritance tree.

I net Or gPer son and account are both structural, are not in the same inheritance
tree, and therefore can't be used together. Some LDAP servers permit this, but
eventually this behavior may change and cause problems.

There is a third type of object class called abstract. It is much like structural except
that it must be inherited to be used. t op is such a class.

Without getting into the specifics of each application there are some general
structural object classes that are useful:

* i net O gPer son: Defines a generic person, along with some contact
information.

e organi zat i onal Rol e: Much like a person, but it defines a generic role
suchas | T Hel pdesk or Fi re Warden.

e organi zati onal Uni t: A generic container, may describe a department
within a container or may be used to separate various parts of the LDAP
tree such as groups, people, and servers

e organi zati on: A company or other organization.

e groupO Names: Stores one or more DNs referring to members of a
group. Not necessarily useful for UNIX groups, but helpful for meeting
invitations or other simple things.

Stick to these for your people and organizations and you will be safe. Most
extensions, such as authentication, use auxiliary attributes. When in doubt, consult
the schema.

The final design consideration is the choice of DNs. Most branches are fairly easy
because there is no chance of duplication. A UNIX group's name and ID is unique,
so using cn as the RDN of a group is possible. What happens when you have two
employees called Fred Smith? Because the DN must be unique, cn=Fr ed

Sm t h, ou=Peopl e, dc=exanpl e, dc=comcould be either of them. Either
something else must be used, such as enpl oyeeNunber , or the RDN will have to
be made from two different attributes separated by a plus sign (+). For example,
cn=Fred Sm th+useri d=123, ou=peopl e, dc=exanple, dc=comhas an
RDN made from two different attributes. Whatever you do, do it consistently!

Concepts, architecture, and design
Page 16 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Section 4. Schemas

This section covers material for topic 301.3 for the Senior Level Linux Professional
(LPIC-3) exam 301. The topic has a weight of 3.

In this section, learn about:

» LDAP schema concepts
* How to create and modify schemas
« Attribute and object class syntax

Up until now, the schema has been mentioned several times but not fully explained.
The schema is a collection of object classes and their attributes. A schema file
contains one or more object classes and attributes in a text format the LDAP server
can understand. You import the schema file into your LDAP server's configuration,
and then use the object classes and attributes in your objects. If the available
schemas don't fit your needs, you can create your own or extend an existing one.

LDAP schema concepts

Technically, a schema is a packaging mechanism for object classes and attributes.
However, the grouping of object classes is not random. Schemas are generally
organized along an application, such as a core, X.500 compatibility, UNIX network
services, sendmail, and so on. If you have a need to integrate an application with
LDAP, you generally have to add a schema to your LDAP server.

A more in-depth look at OpenLDAP configuration will be in a later tutorial in this
series, but the way to add a schema is with i ncl ude /path/to/fil e.schenma.
After restarting the server, the new schema will be available.

When the schema is loaded, you then apply the new object classes to the relevant
objects. This can be done through an LDIF file or through the LDAP application

program interface (API). Applying the object classes gives you more attributes to
use.

Creating and modifying schemas

Schemas have a fairly simple format. Listing 6 shows the schema for the
I net Or gPer son object class along with some of its attributes.

Listing 6. Part of the inetOrgPerson definition

attributetype (2.16.840.1.113730.3.1.241

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

NAME ' di spl ayNane'

DESC ' RFC2798: preferred name to be used when displaying entries'
EQUALI TY casel gnor eMat ch

SUBSTR casel ghor eSubst ri ngsiat ch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

S| NGLE- VALUE)

attributetype (0.9.2342.19200300. 100. 1. 60
NAME ' j pegPhot o'
DESC ' RFC2798: a JPEG i mage'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.28)

obj ectcl ass (2.16.840.1.113730.3.2.2
NAME ' i net Or gPer son’
DESC ' RFC2798: Internet Organizational Person'
SUP or gani zat i onal Per son
STRUCTURAL
MAY (
audi o $ businessCategory $ carlicense $ departnent Nunber $
di spl ayNane $ enpl oyeeNunber $ enpl oyeeType $ gi venNane $
homePhone $ honePostal Address $ initials $ jpegPhoto $
| abel edURI $ mail $ nmanager $ nobile $ o $ pager $
photo $ roomNunber $ secretary $ uid $ userCertificate $
x500uni quel dentifier $ preferredLanguage $
user SM MECertificate $ user PKCS12)

Line spacing is not important in schema files -- it is mostly there for human
readability. The first definition is an at t ri but et ype, which means an attribute. The
parentheses enclose the definition of the attribute. First comes a series of numbers,
separated by periods, called the object ID, or OID, which is a globally unique
number. The OID is also hierarchical, such that if you're assigned the 1.1 tree, you
can create anything like 1.1.1 or 1.1.2.3.4.5.6 without having to register it.

Registering OIDs

You can't just pick any series of numbers for your own OID because
you don't know if the value you choose is, or will be, in use
elsewhere. OIDs must be unique. Some servers let you specify
textual OIDs (mycompany.1.2) which would be unique, just not
necessarily compatible. Anything under the 1.1 namespace can be
used locally but is not guaranteed to be unique.

The best solution is to register your own OID. There are many ways
to do this, depending on if you are a country, a telephone carrier, or
fall under other categories. Luckily, the Internet Assigned Numbers
Authority (IANA) will freely give you your own branch under
.1.3.6.4.1 if you ask.

Following the OID is a series of keywords, each of which may have a value after it.
First the NAME of the attribute defines the name that humans will use, such as in the
LDIF file or when retrieving the information through the LDAP API. Sometimes you
might see the name in the form of NAME (' foo' 'bar'), which means that
either f 0o or bar are acceptable. The server, however, considers the first to be the
primary name of the attribute.

DESC provides a description of the attribute. This helps you understand the attribute
if you're browsing the schema file. EQUALI TY, SUBSTR, and ORDERI NG (not shown)
require a matching rule. This defines how strings are compared, searched, and
sorted, respectively. casel gnor eMVat ch is a case-insensitive match, and

Concepts, architecture, and design
Page 18 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

casel gnor eSubst ri ngsMat ch is also case insensitive. See the Resources
section for Web sites that define all the standard matching rules. Like most things in
LDAP, a server can define its own matching methods for its own attributes, so there
are no comprehensive lists of matching rules.

The SYNTAX of the attribute defines the format of the data by referencing an OID.
RFC 2252 lists the standard syntaxes and their OIDs. If the OID is immediately
followed by a number in curly braces ({}), this represents the maximum length of the
data. 1.3.6.1.4.1.1466.115.121.1.15 represents a Di rect orySt ri ng that is a
UTF-8 string.

Finally, the SI NGLE- VALUE keyword has no arguments and specifies that only one
instance of di spl ayNane is allowed.

The j pegPhot o attribute has a very short definition: just the OID, the name and
description, and a syntax meaning a JPEG object, which is an encoded string of the
binary data. It is not practical to search or sort a picture, and multiple photos can
exist in a single record.

Defining an object class follows a similar method. The obj ect cl ass keyword starts
the definition, followed by parentheses, the OID of the object class, and then the
definitions. NAME and DESC are the same as before. SUP defines a superior object
class, which is another way of saying that the object class being defined inherits
from the object class specified by the SUP keyword. Thus, an i net Or gPer son
carries the attributes of an or gani zat i onal Per son.

The STRUCTURAL keyword defines this as a structural object class, which can be
considered the primary type of the object. Other options are AUXI LI ARY, which
adds attributes to an existing object, and ABSTRACT, which is the same as structural
but cannot be used directly. Abstract object classes must be inherited by another
object class, which can then be used. The t op object class is abstract. It is inherited
by most other structural object classes, including per son, which is the parent of

or gani zat i onal Per son, which, in turn, is inherited by i net Or gPer son.

Two keywords, MAY and MUST, define the attributes that are allowed and mandatory,
respectively, for records using that particular object class. For mandatory items, you
may not save a record without all the items being defined. Each attribute is
separated by a dollar sign ($), even if the line continues on the next line.

It is not a good idea to modify structural object classes, or even existing, well-known,
auxiliary object classes. Because these are well known, you may cause
incompatibility issues in the future if your server is different. Usually the best solution
is to define your own auxiliary object class, create a local schema, and apply it to
your records. For instance, if you are a university and want to store student
attributes, you might consider creating a student object class that is inherited from
either or gani zat i onal Per son or i net Or gPer son and adding your own
attributes. You could then create auxiliary object classes to add more attributes such
as class schedules.

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Understanding which schemas to use

After learning about how schemas are created, it is tempting to start fresh -- to
create your own schema based on your environment. This would certainly take care
of your present needs, but it could quite possibly make things more difficult in the
long run as you add more functionality to your LDAP tree and integrate other
systems. The best approach is to stick with standard object classes and attributes
when you can and extend when you must.

OpenLDAP usually stores its schema files in /etc/openldap/schema, in files with a
.schema extension. Table 3 lists the default schemas along with their purposes.

Table 3. Schemas that ship with OpenLDAP
File name Purpose

corba.schema Defines some object classes and
attributes for handling Common Object
Request Broker Architecture (CORBA)
object references across multiple
machines.

core.schema Defines many common attributes and
object classes. This schema is where you
will find the or gani zati onal Uni t,
t op, dcObj ect, and
or gani zat i onal Rol e. core.schema is
the first place you should look if you need
to find something.

cosine.schema Attributes and object classes from the
X.500 specifications. While there are
some useful things in here, there are
often better alternatives in others such as
core and inetorgperson.

dyngroup.schema An experimental set of objects used with
Netscape Enterprise Server.

inetorgperson.schema Defines the i net Or gPer son object
(which extends objects from
core.schema).

java.schema Like corba.schema, this schema defines
a series of object classes and attributes
to handle the lookup of Java™ classes
within an LDAP tree.

misc.schema Implements some objects to handle mail
lookups within the tree. It is best to
consult your e-mail server's
documentation to see which schema it
uses.

nis.schema This is the schema you use if you move
authentication to LDAP. nis.schema
defines posi xAccount , which provides
attributes for storing authentication data
within the user's object. It also has the
various map types to handle groups,

Concepts, architecture, and design
Page 20 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks

networks, services, and other files that go
into network-based authentication
mechanisms such as the Network
Information System (NIS).

openldap.schema This is more for example purposes and
shows some basic objects.

ppolicy.schema A set of objects to implement password
policies in LDAP, such as aging. Note
that some of these are handled by the
traditional UNIX shadow mechanisms
and are already handled in nis.schema.

In addition, RFC 4519 explains common attributes. After finding the attributes you
want, you can then look through the schema files to determine which files need to be
included in your LDAP configuration and which object classes you must use for your
records.

developerWorks®

Section 5. Summary

In this tutorial you learned about LDAP concepts, architecture, and design. LDAP
grew out of a need to connect to X.500 directories over IP in a simplified way. A
directory presents data to you in a hierarchical manner, much like a tree. Within this
tree are records that are identified by a distinguished name and have many
attribute-value pairs, including one or more object classes that determine what data
can be stored in the record.

LDAP itself refers to the protocol used to search and modify the tree. Practically
though, the term LDAP is used for all components, such as LDAP server, LDAP
data, or just "It's in LDAP".

Data in LDAP is often imported and exported with LDIF, which is a textual
representation of the data. An LDIF file specifies a changet ype, such as add,

del et e, nodr dn, noddn, and nodi f y. These operations let you add entries, delete
entries, move data around in the tree, and change attributes of the data.

Designing the tree correctly is crucial to long-term viability of the LDAP server. A
correct design means fewer change operations are needed, which leads to
consistent data that can easily be found by other applications. By choosing common
attributes, you ensure that other consumers of the LDAP data understand the
meaning of the attributes and that fewer translations are required.

The LDAP schema dictates which attributes can be used in your server. Within the
schema are definitions of the attributes, including OIDs to uniquely identify them,
instructions on how to store and sort the data, and textual descriptions of what the
attributes do. Object classes group attributes together and can be defined as
structural, auxiliary, or abstract.

Concepts, architecture, and design

© Copyright IBM Corporation 1994, 2007. All rights reserved.

Page 21 of 24

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Structural object classes define the record, so a record may only have one structural
object class. Auxiliary object classes add more attributes for specific purposes and
can be added to any record. An abstract object class must be inherited and cannot
be used directly.

Concepts, architecture, and design
Page 22 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Resources

Learn

» Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

» Atthe LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

* RFC 1487, X.500 Lightweight Directory Access Protocol, gives you some
insight into the development of LDAP and the history of X.500.

* RFC 2247, Using Domains in LDAP/X.500 Distinguished Names, is a brief
description of the domai nConponent attribute and how to use it properly in
your LDAP tree.

* RFC 2252, Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions, lists the standard syntaxes for attributes, which can help you figure
out what format a certain attribute is expecting.

* RFC 2849, The LDAP Data Interchange Format (LDIF) - Technical
Specification, describes the LDIF language. It uses Backus-Naur Form (BNF) to
specify the language, which can be tricky to understand. RFC 2234, Augmented
BNF for Syntax Specifications: ABNF, might help you understand the various
operators.

* RFC 4511, Lightweight Directory Access Protocol (LDAP): The Protocol, is the
latest draft of the LDAP protocol.

* RFC 4519, Lightweight Directory Access Protocol (LDAP): Schema for User
Applications, is an updated list of the commonly-used attributes; this list helps
ensure you're using the same attributes everyone else is to describe the same
data.

» The OID descriptions for 2.5.13 link to detailed descriptions of how each
matching rule (string comparison, substrings, and ordering) works.

» This FAQ entry on object classes gives details on some of trickier rules of
dealing with object classes. Some of OpenLDAP's error messages are terse,
especially when dealing with LDIF imports.

» The overlay framework in OpenLDAP is key because the meta-directory
concept can be carried further than just tying together multiple LDAP servers. A
request for a particular tree or OID can be directed to custom code that can call
a script, read a database, or call an API. Another description is on the Symas
Corporation Web site.

» "Demystifying LDAP Data" (O'Reilly, November 2006) explains object class
inheritance. It looks at the i net Or gPer son object class and describes
structural and auxiliary object classes.

» LDAP for Rocket Scientists is an excellent open source guide, despite being a

Concepts, architecture, and design
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 24

http://www.ibm.com/developerworks/linux/lpi/
http://www.lpi.org/en/lpi/english/certification/the_lpic_program
http://tools.ietf.org/html/rfc1487
http://tools.ietf.org/html/rfc2247
http://tools.ietf.org/html/rfc2252
http://tools.ietf.org/html/rfc2849
http://tools.ietf.org/html/rfc2234
http://tools.ietf.org/html/rfc4511
http://tools.ietf.org/html/rfc4519
http://www.alvestrand.no/objectid/2.5.13.html
http://www.openldap.org/faq/data/cache/650.html
http://www.openldap.org/faq/data/cache/1169.html
http://www.symas.com/introtooverlays.shtml
http://www.symas.com/introtooverlays.shtml
http://www.oreillynet.com/pub/a/sysadmin/2006/11/09/demystifying-ldap-data.html?page=1
http://www.zytrax.com/books/ldap/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

work in progress.

* In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

» See all Linux tips and Linux tutorials on developerWorks.

» Stay current with developerWorks technical events and Webcasts.
Get products and technologies

* OpenLDAP is a great choice if you're looking for an LDAP server.

» phpLDAPadmin is a Web-based LDAP administration tool.

* Luma is a good GUI to look at if that's more your style.

» Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

» With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

e Get involved in the developerWorks community through blogs, forums,
podcasts, and community topics in our new developerWorks spaces.

About the author

Sean A. Walberg

Sean Walberg has been working with Linux and UNIX since 1994 in academic,
corporate, and Internet service provider environments. He has written extensively
about systems administration over the past several years.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Concepts, architecture, and design
Page 24 of 24 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.openldap.org/software/download/
http://phpldapadmin.sourceforge.net/
http://luma.sourceforge.net/
http://www.ibm.com/developerworks/offers/sek/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/spaces/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Concepts and architecture
	LDAP, what is it?
	The history of LDAP
	A closer look at
 naming and attributes
	The LDIF file

	Directory design
	Determining if LDAP is
 appropriate
	Organizing your tree

	Schemas
	LDAP schema
 concepts
	Creating and modifying
 schemas
	Understanding which
 schemas to use

	Summary
	Resources
	About the author
	Trademarks

